Preview

L.O. Badalyan Neurological Journal

Advanced search

A clinical case of POL3A-associated hypomyelinating leukodystrophy with spinal cord lesion with a debut in early childhood

https://doi.org/10.46563/2686-8997-2022-3-3-122-126

Abstract

Leukodystrophies are a group of hereditary progressive diseases of the central nervous system characterized by selective lesions in white matter with specific involvement of glial cells.  There are hypomyelinating (absence of myelin deposition), demyelinating (loss of previously deposited myelin), dysmyelinating (deposition of structurally or biochemically abnormal myelin), and myelinolytic leukodystrophies (myelin vacuolization).

Hypomyelinating leukodystrophies (HL), like most leukodystrophies, debut in childhood or adolescence and are characterized by a progressive course of the disease.  HL occurs as a result of impaired synthesis of proteins responsible for the development, structure, and integrity of the myelin sheath, involved in the processes of transcription and translation.  In the latter group, the main role is assigned to HL associated with biallelic mutations in the genes of the RNA polymerase III transcription complex, POLR3: POLR3A, POLR3B, POLR1C and POLR3K. The diagnosis can be confirmed by magnetic resonance imaging of the brain.

POLR3A-associated HL is manifested by hypomyelination, hypodontia, and hypogonadotropic hypogonadism.  The magnetic resonance features of POLR3-associated HL include diffuse hypomyelination with relative preservation of the dentate nuclei, anterolateral nuclei of the thalamus, globus pallidus, pyramidal tracts at the level of the posterior part of the internal capsules, and the corona radiata.  In some cases, thinning of the corpus callosum and atrophy of the cerebellum were also noted.

The article presents a clinical case of a patient with POL3A-associated HL with spinal cord injury with the debut in early childhood.

Contribution: 
Popovich S.G. — concept, text writing, text editing;
Uvakina E.V. — concept, text writing, text editing;
Podkletnova T.V. — concept, text writing, text editing;
Kondakova O.B. — concept, text writing, text editing;
Firumyants A.I. — concept, text editing;
Kuzenkova L.M. — concept,  text editing.
All co-authors are responsible for the integrity of all parts of the manuscript and approval of its final version.

Acknowledgements. The study had no sponsorship.

Conflict of interest. The authors declare no conflict of interest.

Received: August 19, 2022
Accepted: September 09, 2022
Published: September 30, 2022

About the Authors

Sofia G. Popovich
National Medical Research Center for Children’s Health” of the Ministry of Health of the Russian Federation
Russian Federation

MD, junior researcher of the Laboratory of nervous diseases of the National Medical Research Center for Children’s Health of the Ministry of Health of the Russian Federation, Moscow, 119991, Russian Federation.

e-mail: popovich.sg@nczd.ru



Lyudmila M. Kuzenkova
National Medical Research Center for Children’s Health” of the Ministry of Health of the Russian Federation
Russian Federation


Olga B. Kondakova
National Medical Research Center for Children’s Health” of the Ministry of Health of the Russian Federation
Russian Federation


Alexey I. Firumyants
National Medical Research Center for Children’s Health” of the Ministry of Health of the Russian Federation
Russian Federation


Tatyana V. Podkletnova
National Medical Research Center for Children’s Health” of the Ministry of Health of the Russian Federation
Russian Federation


Eugeniya V. Uvakina
National Medical Research Center for Children’s Health” of the Ministry of Health of the Russian Federation
Russian Federation


References

1. van der Knaap M.S., Bugiani M. Leukodystrophies: a proposed classification system based on pathological changes and pathogenetic mechanisms. Acta Neuropathol. 2017; 134(3): 351-82. https://doi.org/10.1007/s00401-017-1739-1

2. Perrier S., Michell-Robinson M.A., Bernard G. POLR3-related leukodystrophy: exploring potential therapeutic approaches. Front. Cell. Neurosci. 2021; 14: 631802. https://doi.org/10.3389/fncel.2020.631802

3. Pelizaeus F. Über eine eigenartige familiäre Entwicklungshemmung vornehmlich auf motorischem Gebiet. Arch. Psychiat. Nervenrk. 1899; 31: 100-4.

4. Merzbacher L. Eine eigenartige familiärhereditäre Erkrankungform (Aplasia axialis extra-corticalis congenita). Z. Ges. Neurol. Psychiat. 1910; 2: 1-138.

5. Morell P. A correlative synopsis of the leukodystrophies. Neuropediatrics. 1984; 15(Suppl.): 62-5. https://doi.org/10.1055/s-2008-1052383

6. Kevelam S.H., Steenweg M.E., Srivastava S., Helman G., Naidu S., Schiffmann R., et al. Update on leukodystrophies: a historical perspective and adapted definition. Neuropediatrics. 2016; 47(6): 349-54. https://doi.org/10.1055/s-0036-1588020

7. Nave K.A. Myelination and the trophic support of long axons. Nat. Rev. Neurosci. 2010; 11(4): 275-83. https://doi.org/10.1038/nrn2797

8. Baron W., Hoekstra D. On the biogenesis of myelin membranes: sorting, trafficking and cell polarity. FEBS Lett. 2010; 584(9): 1760-70. https://doi.org/10.1016/j.febslet.2009.10.085

9. Steenweg M.E., Vanderver A., Blaser S., Bizzi A., De Koning T.J., Mancini G.M., et al. Magnetic resonance imaging pattern recognition in hypomyelinating disorders. Brain. 2010; 133(10): 2971-82. https://doi.org/10.1093/brain/awq257

10. Schiffmann R., Van Der Knaap M.S. Invited article: an MRI-based approach to the diagnosis of white matter disorders. Neurology. 2009; 72(8): 750-9. https://doi.org/10.1212/01.wnl.0000343049.00540.c8

11. Pouwels P.J., Vanderver A., Bernard G., Wolf N.I., Dreha-Kulczewksi S.F., Deoni S.C., et al. Hypomyelinating leukodystrophies: translational research progress and prospects. Ann. Neurol. 2014; 76(1): 5-19. https://doi.org/10.1002/ana.24194

12. Garbern J.Y. Pelizaeus-Merzbacher disease: genetic and cellular pathogenesis. Cell. Mol. Life Sci. 2007; 64(1): 50-65. https://doi.org/10.1007/s00018-006-6182-8

13. Mendes M.I., Gutierrez Salazar M., Guerrero K., Thiffault I., Salomons G.S., Gauquelin L., et al. Bi-allelic Mutations in EPRS, encoding the glutamyl-prolyl-aminoacyl-tRNA synthetase, cause a hypomyelinating leukodystrophy. Am. J. Hum. Genet. 2018; 102(4): 676-84. https://doi.org/10.1016/j.ajhg.2018.02.011

14. Wolf N.I., Ffrench-Constant C., van der Knaap M.S. Hypomyelinating leukodystrophies - unravelling myelin biology. Nat. Rev. Neurol. 2021; 17(2): 88-103. https://doi.org/10.1038/s41582-020-00432-1

15. Schmidt J.L., Pizzino A., Nicholl J., Foley A., Wang Y., Rosenfeld J.A., et al. Estimating the relative frequency of leukodystrophies and recommendations for carrier screening in the era of next-generation sequencing. Am. J. Med. Genet. 2020; 182(8): 1906-12. https://doi.org/10.1002/ajmg.a.61641

16. Bernard G., Thiffault I., Tetreault M., Putorti M. L., Bouchard I., Sylvain M., et al. Tremor-ataxia with central hypomyelination (TACH) leukodystrophy maps to chromosome 10q22.3-10q23.31. Neurogenetics. 2010; 11(4): 457-64. https://doi.org/10.1007/s10048-010-0251-8;

17. Tetreault M., Putorti M.L., Thiffault I., Sylvain M., Venderver A., Schiffmann R., et al. TACH leukodystrophy: locus refinement to chromosome 10q22.3-23.1. Can. J. Neurol. Sci. 2012; 39(1): 122-3. https://doi.org/10.1017/s0317167100022174

18. Dorboz I., Dumay-Odelot H., Boussaid K., Bouyacoub Y., Barreau P., Samaan S., et al. Mutation in POLR3K causes hypomyelinating leukodystrophy and abnormal ribosomal RNA regulation. Neurol. Genet. 2018; 4(6): e289. https://doi.org/10.1212/NXG.0000000000000289

19. Gauquelin L., Cayami F.K., Sztriha L., Yoon G., Tran L.T., Guerrero K., et al. (2019). Clinical spectrum of POLR3-related leukodystrophy caused by biallelic POLR1C pathogenic variants. Neurol. Genet. 2019; 5: e369. 10.1212/NXG.0000000000000369

20. Osterman B., Sylvain M., Chouinard S., Bernard G. Tremor-ataxia with central hypomyelination (TACH): dystonia as a new clinical feature. Mov. Disord. 2012; 27(14): 1829-30. https://doi.org/10.1002/mds.25270

21. Al Yazidi G., Tran L.T., Guerrero K., Vanderver A., Schiffmann R., Wolf N.I., et al. Dystonia in RNA polymerase III-related leukodystrophy. Mov. Disord. Clin. Pract. 2019; 6(2): 155-9. https://doi.org/10.1002/mdc3.12715

22. Pelletier F., Perrier S., Cayami F.K., Mirchi A., Saikali S., Tran L.T., et al. Endocrine and growth abnormalities in 4H leukodystrophy caused by variants in POLR3A, POLR3B and POLR1C. J. Clin. Endocrinol. Metab. 2021; 106(2): e660-74. https://doi.org/10.1210/clinem/dgaa700

23. Wolf N.I., Harting I., Innes A.M., Patzer S., Zeitler P., Schneider A., et al. Ataxia, delayed dentition and hypomyelination: a novel leukoencephalopathy. Neuropediatrics. 2007; 38(2): 64-70. https://doi.org/10.1055/s-2007-985137

24. Thiffault I., Wolf N.I., Forget D., Guerrero K., Tran L.T., Choquet K., et al. Recessive mutations in POLR1C cause a leukodystrophy by impairing biogenesis of RNA polymerase III. Nat.Commun. 2015; 6: 7623. https://doi.org/10.1038/ncomms8623

25. Saitsu H., Osaka H., Sasaki M., Takanashi J.I., Hamada K., Yamashita A., et al. Mutations in POLR3A and POLR3B encoding RNA polymerase III subunits cause an autosomal-recessive hypomyelinating leukoencephalopathy. Am. J. Hum. Genet. 2011; 89(5): 644-51. https://doi.org/10.1016/j.ajhg.2011.10.003

26. Aung W.Y., Mar S., Benzinger T.L. Diffusion tensor MRI as a biomarker in axonal and myelin damage. Imaging Med. 2013; 5(5): 427-40. https://doi.org/10.2217/iim.13.49

27. Cloutier P., Coulombe B. New insights into the biogenesis of nuclear RNA polymerases? Biochem. Cell Biol. 2010; 88(2): 211-21. https://doi.org/10.1139/o09-173

28. La Piana R., Tonduti D., Gordish Dressman H., Schmidt J.L., Murnick J., Brais B., et al. Brain magnetic resonance imaging (MRI) pattern recognition in pol III-related leukodystrophies. J. Child Neurol. 2014; 29(2): 214-20. https://doi.org/10.1177/0883073813503902

29. Vrij-van den Bos S., Hol J.A., La Piana R., Harting I., Vanderver A., Barkhof F., et al. 4H leukodystrophy: a brain magnetic resonance imaging scoring system. Neuropediatrics. 2017; 48(3): 152-60. https://doi.org/10.1055/s-0037-1599141

30. Sytsma T.M., Chen D.H., Rolf B., Dorschner M., Jayadev S., Keene C.D., et al. Spinal cord-predominant neuropathology in an adult-onset case of POLR3A-related spastic ataxia. Neuropathology. 2022; 42(1): 58-65. https://doi.org/10.1111/neup.12775

31. Di Donato I., Gallo A., Ricca I., Fini N., Silvestri G., Gurrieri F., et al. POLR3A variants in hereditary spastic paraparesis and ataxia: clinical, genetic, and neuroradiological findings in a cohort of Italian patients. Neurol. Sci. 2022; 43(2): 1071-7. https://doi.org/10.1007/s10072-021-05462-1

32. Minnerop M., Kurzwelly D., Wagner H., Soehn A.S., Reichbauer J., Tao F., et al. Hypomorphic mutations in POLR3A are a frequent cause of sporadic and recessive spastic ataxia. Brain. 2017; 140(6): 1561-78. https://doi.org/10.1093/brain/awx095

33. Perrier M.F., Gurgel-Juarez N., Flowers H.L., McCormick A., Short S.J. Mindfulness-based interventions for children and adolescents across all settings: a scoping review protocol. Syst. Rev. 2020; 9(1): 286. https://doi.org/10.1186/s13643-020-01548-7

34. Zech M., Jech R., Boesch S., Škorvánek M., Weber S., Wagner M., et al. Monogenic variants in dystonia: an exome-wide sequencing study. Lancet Neurol. 2020; 19(11): 908-18. https://doi.org/10.1016/s1474-4422(20)30312-4


Review

For citations:


Popovich S.G., Kuzenkova L.M., Kondakova O.B., Firumyants A.I., Podkletnova T.V., Uvakina E.V. A clinical case of POL3A-associated hypomyelinating leukodystrophy with spinal cord lesion with a debut in early childhood. L.O. Badalyan Neurological Journal. 2022;3(3):122-126. (In Russ.) https://doi.org/10.46563/2686-8997-2022-3-3-122-126

Views: 922


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2686-8997 (Print)
ISSN 2712-794X (Online)