Preview

L.O. Badalyan Neurological Journal

Advanced search

Vitamin D in the prevention and treatment of comorbid conditions in Duchenne muscular dystrophy

https://doi.org/10.46563/2686-8997-2021-2-1-38-50

Abstract

Duchenne muscular dystrophy (DMD) is an X-linked recessive degenerative neuromuscular disorder due to a deficiency of dystrophin protein. This protein is most common in skeletal and cardiac muscles, to a lesser extent in smooth muscles and the brain. With DMD, progressive damage and muscle degeneration, a delay in motor development, and respiratory cardiac disorders are progressing. Patients with DMD have an increased risk of developing osteoporosis, fractures of the tubular bones and vertebrae, and neurocognitive impairment. Vitamin D is recommended prophylactically for DMD since many studies have shown its deficiency.

The purpose of this work is to consolidate the literature data on the vitamin D deficiency in DMD patients and its effects on the development of concurrent comorbid conditions of the musculoskeletal, endocrine, and nervous systems. 

The authors discuss data concerning the appropriate level of vitamin D throughout the life span of DMD has a positive effect on the course of the disease patients’ quality of life ends. Primary clinical outcomes of vitamin D normalization include prevention of the development of osteoporosis (especially after the start of steroid therapy), fractures of the tubular bones and vertebrae, prolonged ability to walk, more effective treatment with bisphosphonates, including a decrease in the number of complications during initial use and lower jaw necrosis, positive effect on the expression of autistic spectrum symptoms. For patients with long-term steroid therapy, metabolic and liver disorders, calcidiol could be used, allowing quick deficiency compensation instead of standard vitamin D preparations.

About the Authors

Tatiana A. Gremiakova
Charity Fund «Gordey»; Central Clinical Hospital with a Polyclinic of the Administrative Department of the President of the Russian Federation
Russian Federation


Vasiliy M. Souslov
Saint-Petersburg State Pediatric Medical University
Russian Federation


Gulzhan E. Sakbaeva
Central Clinical Hospital with a Polyclinic of the Administrative Department of the President of the Russian Federation
Russian Federation

Head of the children’s psychoneurological department of the Central Clinical Hospital with a Polyclinic of the Administrative Department of the President of the Russian Federation, Moscow, 115211, Russian Federation.

e-mail: saguer275@gmail.com



Andrey A. Stepanov
Central Clinical Hospital with a Polyclinic of the Administrative Department of the President of the Russian Federation
Russian Federation


References

1. Ryder S., Leadley R.M., Armstrong N., Westwood M., de Kock S., Butt T., et al. The burden, epidemiology, costs and treatment for Duchenne muscular dystrophy: an evidence review. Orphanet J. Rare Dis. 2017; 12(1): 79-100. https://doi.org/10.1186/s13023-017-0631-3

2. Birnkrant D.J., Bushby K., Bann C.M., Apkon S.D., Blackwell A., Brumbaugh D., et al. DMD Care Considerations Working Group. Diagnosis and management of Duchenne muscular dystrophy, part 1: diagnosis, and neuromuscular, rehabilitation, endocrine, and gastrointestinal and nutritional management. Lancet Neurol. 2018; 17(3): 251–67. https://doi.org/10.1016/S1474-4422(18)30024-3

3. Wu J.Y., Kuban K.C.K., Allred E. Association of Duchenne muscular dystrophy with autism spectrum disorder. J. Child. Neurol. 2005; 20(10): 790–5. https://doi.org/10.1177/08830738050200100201

4. Bylo M., Farewell R., Coppenrath V.A., Yogaratnam D. A review of Deflazacort for patients with Duchenne muscular dystrophy. Ann. Pharmacother. 2020; 54(8): 788–94. https://doi.org/10.1177/1060028019900500

5. Birnkrant D.J., Bushby K., Bann C.M., Alman B.A., Apkon S.D., Blackwell A., et al. Diagnosis and management of Duchenne muscular dystrophy, part 2: respiratory, cardiac, bone health, and orthopaedic management. Lancet Neurol. 2018; 17(4): 347–61. https://doi.org/10.1016/S1474-4422(18)30025-5

6. McDonald D.G., Kinali M., Gallagher A.C., Mercuri E., Muntoni F., Roper H., et al. Fracture prevalence in Duchenne muscular dystrophy. Dev. Med. Child Neurol. 2002; 44(10): 695–8. https://doi.org/10.1017/s0012162201002778

7. Bian Q., McAdam L., Grynpas M., Mitchell J., Harrington J. Increased rates of vitamin D insufficiency in boys with Duchenne muscular dystrophy despite higher vitamin D3 supplementation. Glob. Pediatr. Health. 2019; 6: 2333794X19835661.

8. Perera N., Sampaio H., Woodhead H., Farrar M. Fracture in Duchenne muscular dystrophy: natural history and vitamin D deficiency. J. Child Neurol. 2016; 31(9): 1181–7. https://doi.org/10.1177/0883073816650034

9. Sertpoyraz F.M., Tiftikçioğlu B.İ. The relationship of bone mineral density and vitamin D levels with steroid use and ambulation in patients with Duchenne muscular dystrophy. Turk J. Phys. Med. Rehab. 2019; 65(3): 216–21. https://doi.org/10.5606/tftrd.2019.3565

10. Gromova O.A., Torshin I.J. Vitamin D — Change of Paradigm [Vitamin D – smena paradigmy]. Moscow: GEOTAR-Media; 2017. (in Russian)

11. Pigarova E.A., Povalyaeva A.A., Dzeranova L.K., Rozhinskaya L.Ya. The role of vitamin D in the prevention and treatment of osteoporosis: novel insight into the known issue. Russkiy meditsinskiy zhurnal. Meditsinskoe obozrenie. 2019; 3(10-2): 102–6. (in Russian)

12. Lashkova Yu.S. Prevention and treatment of vitamin d deficiency: current look at the issue. Pediatricheskaya farmakologiya. 2015; 12(1): 46–51. (in Russian)

13. Wacker M., Holick M.F. Vitamin D — effects on skeletal and extraskeletal health and the need for supplementation. Nutrients. 2013; 5(1): 111–48. https://doi.org/10.3390/nu5010111

14. Płudowski P., Karczmarewicz E., Bayer M., Carter G., Chlebna-Sokół D., CzechKowalska J., et al. Practical guidelines for the supplementation of vitamin D and the treatment of deficits in Central Europe — recommended vitamin D intakes in the general population and groups at risk of vitamin D deficiency. Endokrynol. Pol. 2013; 64(4): 319–27. https://doi.org/10.5603/EP.2013.0012

15. Abrams S.A., Tiosano D. Update on vitamin D during childhood. Curr. Opin. Endocrinol. Diabetes Obes. 2014; 21(1): 51–5. https://doi.org/10.1097/01.med.0000436252.53459.ef

16. Iyer P., Diamond F. Detecting disorders of vitamin D deficiency in children: an update. Adv. Pediatr. 2013; 60(1): 89–106. https://doi.org/10.1016/j.yapd.2013.04.006

17. Clinical recommendations. Vitamin D deficiency in adults: diagnostics, therapy, prophylaxis. Moscow; 2015. (in Russian)

18. Khammissa R.A.G., Fourie J., Motswaledi M.H., Ballyram R., Lemmer J., Feller L. The biological activities of vitamin D and its receptor in relation to calcium and bone homeostasis, cancer, immune and cardiovascular systems, skin biology, and oral health. Biomed. Res. Int. 2018; 2018: 9276380. https://doi.org/10.1155/2018/9276380

19. Elder C.J., Bishop N.J. Rickets. Lancet. 2014; 383(9929): 1665–76. https://doi.org/10.1016/s0140-6736(13)61650-5

20. Wagner C.L., Greer F.R. American Academy of Pediatrics Section on Breastfeeding; American Academy of Pediatrics Committee on Nutrition. Prevention of rickets and vitamin D deficiency in infants, children, and adolescents. Pediatrics. 2008; 122(5): 1142–52. https://doi.org/10.1542/peds.2008-1862

21. Hoigné E.P., Zaugg Ch., Mori A.C., Martin F., Knirsch U., Relly Ch., et al. Muscle pain and mild proximal weakness can be due to vitamin D deficiency. Eur. J. Paediatr. Neurol. 2017; 21(1): e225. https://doi.org/10.1016/j.ejpn.2017.04.1232

22. Priemel M., von Domarus C., Klatte T.O., Kessler S., Schlie J., Meier S., et al. Bone mineralization defects and vitamin D deficiency: histomorphometric analysis of iliac crest bone biopsies and circulating 25-hydroxyvitamin D in 675 patients. J. Bone Miner. Res. 2010; 25(2): 305–12. https://doi.org/10.1359/jbmr.090728

23. Alshaikh N., Brunklaus A., Davis T., Robb S. A., Quinlivan R., Munot P. et al. Dubowitz Neuromuscular Team. Vitamin D in corticosteroid-naive and corticosteroid-treated Duchenne muscular dystrophy: what dose achieves optimal 25(OH) vitamin D levels? Arch. Dis. Child. 2016; 101(10): 957–61. https://doi.org/10.1136/archdischild-2015-308825

24. Bianchi M.L., Morandi L., Andreucci E., Vai S., Frasunkiewicz J., Cottafava R. Low bone density and bone metabolism alterations in Duchenne muscular dystrophy: response to calcium and vitamin D treatment. Osteoporos. Int. 2011; 22(2): 529–39. https://doi.org/10.1007/s00198-010-1275-5

25. Huncharek M., Muscat J., Kupelnick B. Impact of dairy products and dietary calcium on bone-mineral content in children: results of a meta-analysis. Bone. 2008; 43(2): 312–21. https://doi.org/10.1016/j.bone.2008.02.022

26. Greer F.R., Krebs N.F. Optimizing bone health and calcium intakes of infants, children, and adolescents. Pediatrics. 2006; 117(2): 578–85. https://doi.org/10.1542/peds.2005-2822

27. Pearce S.H.S., Cheetham T.D. Diagnosis and management of vitamin D deficiency. BMJ. 2010; 340: b5664. https://doi.org/10.1136/bmj.b5664

28. Perera N., Farrar M. Bone health in children with Duchenne muscular dystrophy: a review. Pediat. Therapeut. 2015; 5(3): 10. https://doi.org/10.4172/2161-0665.1000252

29. Jones G. Pharmacokinetics of vitamin D toxicity. Am. J. Clin. Nutr. 2008; 88(2): 582S–586S. https://doi.org/10.1093/ajcn/88.2.582S.

30. Vieth R. The mechanisms of vitamin D toxicity. Bone Miner. 1990; 11(3): 267–72. https://doi.org/10.1016/0169-6009(90)90023-9

31. Vogiatzi M.G., Jacobson-Dickman E., DeBoer M.D. Drugs, and therapeutics committee of the pediatric endocrine society. Vitamin D supplementation and risk of toxicity in pediatrics: a review of current literature. J. Clin. Endocrinol. Metab. 2014; 99(4): 1132–41. https://doi.org/10.1210/jc.2013-3655.

32. Rusińska A., Płudowski P., Walczak M., Borszewska-Kornacka M.K., Bossowski A., Chlebna-Sokół D., et al. Vitamin D supplementation guidelines for general population and groups at risk of vitamin D deficiency in Poland – recommendations of the Polish society of pediatric endocrinology and diabetes and the expert panel with participation of National Specialist Consultants and Representatives of Scientific Societies – 2018 Update. Front. Endocrinol. (Lausanne). 2018; 9: 246. https://doi.org/10.3389/fendo.2018.00246

33. Matthews E., Brassington R., Kuntzer T., Jichi F., Manzur A.Y. Corticosteroids for the treatment of Duchenne muscular dystrophy. Cochrane Database Syst. Rev. 2016; (5): CD003725. https://doi.org/10.1002/14651858.CD003725.pub4

34. Shymanskyi I., Lisakovska O., Mazanova A., Labudzynskyi D., Veliky M. Vitamin D3 modulates impaired crosstalk between ranK and glucocorticoid receptor signaling in bone marrow cells after chronic Prednisolone administration. Front. Endocrinol. (Lausanne). 2018; 7(9): 303. https://doi.org/10.3389/fendo.2018.00303

35. Wang R.T., Silverstein Fadlon C.A., Ulm J.W., Jankovic I., Eskin A., Lu A., et al. Online self-report data for Duchenne muscular dystrophy confirms natural history and can be used to assess for therapeutic benefits. PLoS Curr. 2014; (6). https://doi.org/10.1371/currents.md.e1e8f2be7c949f9ffe81ec6fca1cce6a

36. Ilias I., Zoumakis E., Ghayee H. An overview of glucocorticoid induced osteoporosis. Available at: https://www.ncbi.nlm.nih.gov/books/NBK278968/

37. Joseph S., Wang C., Di Marco M., Horrocks I., Abu-Arafeh I., Baxter A., et al. Fractures and bone health monitoring in boys with Duchenne muscular dystrophy managed within the Scottish Muscle Network. Neuromuscul. Disord. 2019; 29(1): 59–66. https://doi.org/10.1016/j.nmd.2018.09.005

38. King W.M., Ruttencutter R., Nagaraja H.N., Matkovic V., Landoll J., Hoyle C., et al. Orthopedic outcomes of long-term daily corticosteroid treatment in Duchenne muscular dystrophy. Neurology. 2007; 68(19): 1607–13. https://doi.org/10.1212/01.wnl.0000260974.41514.83

39. Quattrocelli M., Zelikovich A.S., Jiang Z., Peek C.B., Demonbreun A.R., Kuntz N.L., et al. Pulsed glucocorticoids enhance dystrophic muscle performance through epigenetic-metabolic reprogramming. JCI Insight. 2019; 4(24): e132402. https://doi.org/10.1172/jci.insight.132402

40. Ward L.M., Konji V., Ma J. The management of osteoporsois in children. Osteoporos. Int. 2016; 27(7): 2147–79. https://doi.org/10.1007/s00198-016-3515-9

41. Bachrach L.K. Diagnosis and treatment of pediatric osteoporosis. Curr. Opin. Endocrinol. Diabetes Obes. 2014; 21(6): 454–60. https://doi.org/10.1097/MED.0000000000000106

42. Simm P.J., Johannesen J., Briody J., McQuade M., Hsu B., Bridge C., et al. Zoledronic acid improves bone mineral density, reduces bone turnover and improves skeletal architecture over 2 years of treatment in children with secondary osteoporosis. Bone. 2011; 49(5): 939–43. https://doi.org/10.1016/j.bone.2011.07.031

43. Ma J., McMillan H.J., Karaguzel G., Goodin C., Wasson J., Matzinger M.A., et al. The time to and determinants of first fractures in boys with Duchenne muscular dystrophy. Osteoporos. Int. 2017; 28(2): 597–608. https://doi.org/10.1007/s00198-016-3774-5

44. Sbrocchi A.M., Rauch F., Jacob P., McCormick A., McMillan H.J., Matzinger M.A., et al. The use of intravenous bisphosphonate therapy to treat vertebral fractures due to osteoporosis among boys with Duchenne muscular dystrophy. Osteoporos. Int. 2012; 23(11): 2703–11. https://doi.org/10.1007/s00198-012-1911-3

45. Gordon K.E., Dooley J.M., Sheppard K.M., MacSween J., Esser M.J. Impact of bisphosphonates on survival for patients with Duchenne muscular dystrophy. Pediatrics. 2011; 127(2): e353-358. https://doi.org/10.1542/peds.2010-1666

46. Carmel A.S., Shieh A., Bang H., Bockman R.S. The 25(OH)D level needed to maintain a favorable bisphosphonate response is ≥33 ng/ml. Osteoporos. Int. 2012; 23(10): 2479–87. https://doi.org/10.1007/s00198-011-1868-7

47. Peris P., Martínez-Ferrer A., Monegal A., Martínez de Osaba M.J., Muxi A., Guañabens N. 25 hydroxyvitamin D serum levels influence adequate response to bisphosphonate treatment in postmenopausal osteoporosis. Bone. 2012; 51(1): 54–8. https://doi.org/10.1016/j.bone.2012.03.026

48. Srivastava T., Dai H., Haney C.J. Serum 25-hydroxyvitamin D level and acute-phase reaction following initial intravenous bisphosphonate. J. Bone Miner. Res. 2011; 26(2): 437–8. https://doi.org/10.1002/jbmr.290

49. Rosen C.J., Brown S. Severe hypocalcemia after intravenous bisphosphonate therapy in occult vitamin D deficiency. N. Engl. J. Med. 2003; 348(15): 1503–4. https://doi.org/10.1056/NEJM200304103481521

50. Bertoldo F., Pancheri S., Zenari S., Giovanazzi B., Zanatta M., Valenti M.T., et al. Serum 25-hydroxyvitamin D levels modulate the acute-phase response associated with the first nitrogen-containing bisphosphonate infusion. J. Bone Miner. Res. 2010; 25(3): 447–54. https://doi.org/10.1359/jbmr.09

51. Hokugo A., Christensen R., Chung E.M., Sung E.C., Felsenfeld A.L., Sayre J.W., et al. Increased prevalence of bisphosphonate-related osteonecrosis of the jaw with vitamin D deficiency in rats. J. Bone Miner. Res. 2010; 25(6): 1337–49. https://doi.org/10.1002/jbmr.23

52. Guiraud S., Davies K.E. Pharmacological advances for treatment in Duchenne muscular dystrophy. Curr. Opin. Pharmacol. 2017; 34: 36–48. https://doi.org/10.1016/j.coph.2017.04.002

53. Cannell J.J., Grant W.B. What is the role of vitamin D in autism? Dermatoendocrinol. 2013; 5(1): 199–204. https://doi.org/10.4161/derm.24356

54. Wimalawansa S.J. Vitamin D deficiency: effects on oxidative stress, epigenetics, gene regulation, and aging. Biology (Basel). 2019; 8(2): 30. https://doi.org/10.3390/biology8020030

55. Nakamura A. Mutation-based therapeutic strategies for Duchenne muscular dystrophy: from genetic diagnosis to therapy. J. Pers. Med. 2019; 9(1): 16. https://doi.org/10.3390/jpm9010016.

56. Mitri J., Dawson-Hughes B., Hu F.B., Pittas A.G. Effects of vitamin D and calcium supplementation on pancreatic β cell function, insulin sensitivity, and glycemia in adults at high risk of diabetes: the calcium and vitamin D for diabetes mellitus (CaDDM) randomized controlled trial. Am. J. Clin. Nutr. 2011; 94(2): 486–94. https://doi.org/10.3945/ajcn.111.011684

57. Kelly A., Brooks L.J., Dougherty S., Carlow D.C., Zemel B.S. A cross-sectional study of vitamin D and insulin resistance in children. Arch. Dis. Child. 2011; 96(5): 447–52. https://doi.org/10.1136/adc.2010.187591

58. Saad K., Abdel-Rahman A., Elserogy Y., Al-Atram A., El-Houfey A., Othman H., et al. Retraction: Randomized controlled trial of vitamin D supplementation in children with autism spectrum disorder. J. Child Psychol. Psychiatry. 2019; 60(6): 711. https://doi.org/10.1111/jcpp.13076

59. Thangarajh M., Hendriksen J., McDermott M.P., Kimberly M.W., Hart A., Griggs R.C. Relationships between DMD mutations and neurodevelopment in dystrophinopathy. Neurology. 2019; 93(17): e1597-e1604. https://doi.org/10.1212/WNL.0000000000008363

60. Naidoo M., Anthony K. Dystrophin Dp71 and the neuropathophysio­logy of duchenne muscular dystrophy. Mol. Neurobiol. 2020; 57(3): 1748–67. https://doi.org/10.1007/s12035-019-01845-w

61. Mrazova L., Vondracek P., Danhofer P., Pejcochova J., Jurikova Z., Honzik T., et al. Triple trouble: a case report of an unusual combination of Duchenne muscular dystrophy, epilepsy, and autism. Autism Open Access. 2016; 6: 1. https://doi.org/10.4172/2165-7890.1000162

62. Abdel-Salam O.M.E., Youness E.R., Mohammed N.A., Elhamed W.A.A. Nuclear Factor-Kappa B and other oxidative stress biomarkers in serum of autistic children. Open J. Mol. Integrative Physiol. 2015; 5(1): 18–27. https://doi.org/10.4236/ojmip.2015.51002

63. Voineagu I., Wang X., Johnston P., Lowe J.K., Tian Y., Horvath S., et al. Transcriptomic analysis of autistic brain reveals convergent molecular pathology. Nature. 2011; 474(7351): 380–4. https://doi.org/10.1038/nature10110

64. Duffy F.H., Shankardass A., Mcanulty G.B., Eksioglu Y.Z., Coulter D., Rotenberg A., et al. Corticosteroid therapy in regressive autism: A retrospective study of effects on the Frequency Modulated Auditory Evoked Response (FMAER), language, and behavior. BMC Neurol. 2014; 14: 70. https://doi.org/10.1186/1471-2377-14-70

65. Fujino H., Saito T., Matsumura T., Shibata S., Iwata Y., Fujimura H., et al. Autism spectrum disorders are prevalent among patients with dystrophinopathies. Neurol. Sci. 2018; 39(7): 1279–82. https://doi.org/10.1007/s10072-018-3341-2

66. Parisi L., Di Filippo T., Glorioso P., La Grutta S., Epifanio M.S., Roccella M. Autism spectrum disorders in children affected by Duchenne muscular dystrophy. Minerva Pediatrica. 2018; 70(3): 233–9. https://doi.org/10.23736/S0026-4946.16.04380-2

67. Stay T.L., Miterko L.N., Arancillo M., Lin T., Sillitoe R.V. In vivo cerebellar circuit function is disrupted in an mdx mouse model of Duchenne muscular dystrophy. Dis. Model. Mech. 2019; 13(2): dmm040840. https://doi.org/10.1242/dmm.040840

68. Cannell J.J. Autism and vitamin D. Med. Hypotheses. 2008; 70(4): 750–9. https://doi.org/10.1016/j.mehy.2007.08.016

69. Jia F., Wang B., Shan L., Xu Z., Staal W.G., Du L. Core symptoms of autism improved after vitamin D supplementation. Pediatrics. 2015; 135(1): е196–8. https://doi.org/10.1542/peds.2014-2121

70. Cannell J.J. Vitamin D and autism, what’s new? Rev. Endocr. Metab. Disord. 2017; 18(2): 183–93. https://doi.org/10.1007/s11154-017-9409-0


Review

For citations:


Gremiakova T.A., Souslov V.M., Sakbaeva G.E., Stepanov A.A. Vitamin D in the prevention and treatment of comorbid conditions in Duchenne muscular dystrophy. L.O. Badalyan Neurological Journal. 2021;2(1):38-50. (In Russ.) https://doi.org/10.46563/2686-8997-2021-2-1-38-50

Views: 1373


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2686-8997 (Print)
ISSN 2712-794X (Online)