Treatment of multiple sclerosis in children: review of clinical trials
https://doi.org/10.46563/2686-8997-2023-4-1-43-51
EDN: yjkpuy
Abstract
Multiple sclerosis (MS) is a rare neuroinflammatory and neurodegenerative disease that leads to disability and a significant decrease in the quality of life. Over the past decade, the focus of studies of MS disease-modifying therapies (DMT) in adults have significantly changed to highly effective drugs at the early stages of the disease; in pediatric patients, safer, but less effective DMTs are preferred.
Today, only two DMTs (fingolimod and teriflunomide) investigated over large phase III studies were approved by regulatory authorities for use in children.
In recent years, an increasing number of MS children have been receiving highly effective therapy with drugs such as natalizumab, monoclonal antibodies to CD20, monoclonal antibodies to CD52, and autologous hematopoietic stem cell transplantation. These highly effective methods of treatment provide a significant reduction in the inflammatory activity of the disease compared to the first-line DMTs. Therefore, a number of phase II and III studies are currently conducted to assess their efficacy and safety in MS children.
This review is related to the basic treatment of MS in pediatric patients, the study of the efficacy and safety of the currently available drugs.
Contribution:
Abdullaeva L.M. — concept and design of the study, writing the text, editing;
Bursagova B.I. — writing the text, editing;
Kurenkov A.L. — editing;
Kuzenkova L.M. — editing;
All co-authors are responsible for the integrity of all parts of the manuscript and approval of its final version.
Acknowledgements. The study had no sponsorship.
Conflict of interest. The authors declare no conflict of interest.
Received: February 17, 2023
Accepted: March 3, 2023
Published: April 20, 2023
About the Authors
Luizat M. AbdullaevaRussian Federation
MD, junior research assistant of the Laboratory of rare hereditary diseases in children of the medical genetic center, neurologist of the Center of child psychoneurology, National Medical Research Center of Children’s Health, Moscow, 119991, Russian Federation.
e-mail: instorm@inbox.ru
Bella I. Bursagova
Russian Federation
Alexey L. Kurenkov
Russian Federation
Lyudmila M. Kuzenkova
Russian Federation
References
1. Belman A.L., Krupp L.B., Olsen C.S., Rose J.W., Aaen G., Benson L., et al. Characteristics of children and adolescents with multiple sclerosis. Pediatrics. 2016; 138(1): e20160120. https://doi.org/10.1542/peds.2016-0120
2. McGinley M., Rossman I.T. Bringing the HEET: the argument for high-efficacy early treatment for pediatriconset multiple sclerosis. Neurotherapeutics. 2017; 14(4): 985–98. https://doi.org/10.1007/s13311-017-0568-1
3. Brown J.W.L., Coles A., Horakova D., Havrdova E., Izquierdo G., Prat A., et al. Association of initial disease modifying therapy with later conversion to secondary progressive multiple sclerosis. JAMA. 2019; 321(2): 175–87. https://doi.org/10.1001/jama.2018.20588
4. Bevan C., Cree B.A. Disease activity free status: a new end point for a new era in multiple sclerosis clinical research? JAMA Neurol. 2014; 71(3): 269–70. https://doi.org/10.1001/jamaneurol.2013.5486
5. Chitnis T., Aaen G., Belman A., Benson L., Gorman M., Goyal M.S., et al. Improved relapse recovery in paediatric compared to adult multiple sclerosis. Brain. 2020; 143(9): 2733–41. https://doi.org/10.1093/brain/awaa199
6. Huppke P., Huppke B., Ellenberger D., Rostasy K., Hummel H., Stark W., et al. Therapy of highly active pediatric multiple sclerosis. Mult. Scler. J. 2019; 25(1): 72–8. https://doi.org/10.1177/1352458517732843
7. Yeh E.A., Weinstock-Guttman B., Ramanathan M., Ramasamy D.P., Willis L., Cox J.L., et al. Magnetic resonance imaging characteristics of children and adults with pediatric-onset multiple sclerosis. Brain. 2009; 132(Pt. 12): 3392–400. https://doi.org/10.1093/brain/awp278
8. Pfeifenbring S., Bunyan R.F., Metz I., Rover C., Huppke P., Gartner J., et al. Extensive acute axonal damage in pediatric multiple sclerosis lesions. Ann. Neurol. 2015; 77(4): 655–67. https://doi.org/10.1002/ana.24364
9. Kerbrat A., Aubert-Broche B., Fonov V., Narayanan S., Sled J.G., Arnold D.A., et al. Reduced head and brain size for age and disproportionately smaller thalami in child-onset MS. Neurology. 2012; 78(3): 194–201. https://doi.org/10.1212/WNL.0b013e318240799a
10. Amato M.P., Goretti B., Ghezzi A., Lori S., Zipoli V., Moiola L., et al. Cognitive and psychosocial features in childhood and juvenile MS: two-year follow-up. Neurology. 2010; 75(13): 1134–40. https://doi.org/0.1212/WNL.0b013e3181f4d821
11. Ruano L., Branco M., Portaccio E., Goretti B., Niccolai C., Patti F., et al. Patients with pediatric-onset multiple sclerosis are at higher risk of cognitive impairment in adulthood: an Italian collaborative study. Mult. Scler. 2018; 24(9): 1234–4. https://doi.org/10.1177/1352458517717341
12. Gorman M.P., Healy B.C., Polgar-Turcsanyi M., Chitnis T. Increased relapse rate in pediatric-onset compared with adult-onset multiple sclerosis. Arch. Neurol. 2009; 66(1): 54–9. https://doi.org/10.1001/archneurol.2008.505
13. Food and Drug Association. Press Announcements – FDA expands approval of Gilenya to treat multiple sclerosis in pediatric patients. Office of the Commissioner; 2018. Available at: https://www.fda.gov/newsevents/newsroom/ pressannouncements/ucm607501.htm
14. Paik J. Teriflunomide: Pediatric First Approval. Paediatr. Drugs. 2021; 23(6): 609–13. https://doi.org/10.1007/s40272-021-00471-1
15. Chitnis T., Banwell B., Kappos L., Arnold D.L., Gucuyener K., Deiva K., et al. Safety and efficacy of teriflunomide in paediatric multiple sclerosis (TERIKIDS): a multicentre, double-blind, phase 3, randomised, placebo-controlled trial. Lancet Neurol. 2021; 20(12): 1001–11. https://doi.org/10.1016/S1474-4422(21)00364-1
16. Mikaeloff Y., Caridade G., Tardieu M., Suissa S. Effectiveness of early beta interferon on the first attack after confirmed multiple sclerosis: a comparative cohort study. Eur. J. Paediatr. Neurol. 2008; 12(3): 205–9. https://doi.org/10.1016/j.ejpn.2007.08.001
17. Mikaeloff Y., Moreau T., Debouverie M., Pelletier J., Lebrun C., Gout O., et al. Interferon-beta treatment in patients with childhood-onset multiple sclerosis. J. Pediatr. 2001; 139(3): 443–6. https://doi.org/10.1067/mpd.2001.117004
18. Tenembaum S.N., Segura M.J. Interferon beta-1a treatment in childhood and juvenile-onset multiple sclerosis. Neurology. 2006; 67(3): 511–3. https://doi.org/10.1212/01.wnl.0000231137.24467.aa
19. Pohl D., Rostasy K., Gärtner J., Hanefeld F. Treatment of early onset multiple sclerosis with subcutaneous interferon beta-1a. Neurology. 2005; 64(5): 888–90. https://doi.org/10.1212/01.WNL.0000153570.33845.6A
20. Pakdaman H., Fallah A., Sahraian M.A., Pakdaman R., Meysamie A. Treatment of early onset multiple sclerosis with suboptimal dose of interferon beta-1a. Neuropediatrics. 2006; 37(4): 257–60. https://doi.org/10.1055/s-2006-924723
21. Ghezzi A., Amato M.P., Capobianco M., Gallo P., Marrosu G., Martinelli V., et al. Disease-modifying drugs in childhood-juvenile multiple sclerosis: results of an Italian co-operative study. Mult. Scler. 2005; 11(4): 420–4. https://doi.org/10.1191/1352458505ms1206oa
22. Tenembaum S.N., Banwell B., Pohl D., Krupp L.B., Boyko A., Meinel M., et al. Subcutaneous interferon beta-1a in pediatric multiple sclerosis: a retrospective study. J. Child Neurol. 2013; 28(7): 849–56. https://doi.org/10.1177/0883073813488828
23. Krysko K.M., Graves J., Rensel M., Weinstock-Guttman B., Aaen G., Benson L., et al. Use of newer disease modifying therapies in pediatric multiple sclerosis in the US. Neurology. 2018; 91(19): e1778–87. https://doi.org/10.1016/j.msard.2018.02.022
24. Jakimovski D., Kolb C., Ramanathan M., Zivadinov R., Weinstock-Guttman B. Interferon beta for multiple sclerosis. Cold Spring Harb. Perspect. Med. 2018; 8(11): a032003. https://doi.org/10.1101/cshperspect.a032003
25. Weinstock-Guttman B., Nair K.V., Glajch J.L., Ganguly T.C., Kantor D. Two decades of glatiramer acetate: from initial discovery to the current development of generics. J. Neurol. Sci. 2017; 376: 255–259. https://doi.org/10.1016/j.jns.2017.03.030
26. Banwell B., Reder A.T., Krupp L., Tenembaum S., Eraksoy M., Alexey B., et al. Safety and tolerability of interferon beta-1b in pediatric multiple sclerosis. Neurology. 2006; 66(4): 472–6. https://doi.org/10.1212/01.wnl.0000198257.52512.1a
27. Ghezzi A., Amato M.P., Capobianco M., Gallo P., Marrosu M.G., Martinelli V., et al. Treatment of early-onset multiple sclerosis with intramuscular interferonbeta-1a: long-term results. Neurol. Sci. 2007; 28(3): 127–32. https://doi.org/10.1007/s10072-007-0804-2
28. Gartner J., Bruck W., Weddige A., Hummel H., Norenberg C., Bugge J.P., et al. Interferon beta-1b in treatment-naive paediatric patients with relapsing-remitting multiple sclerosis: Two-year results from the BETAPAEDIC study. Mult. Scler. J. Exp. Transl. Clin. 2017; 3(4): 2055217317747623. https://doi.org/10.1177/2055217317747623
29. Ghezzi A., Amato M.P., Annovazzi P., Capobianco M., Gallo P., La Mantia L., et al. Long-term results of immunomodulatory treatment in children and adolescents with multiple sclerosis: the Italian experience. Neurol. Sci. 2009; 30(3): 193–9. https://doi.org/10.1007/s10072-009-0083-1
30. Kornek B., Bernert G., Balassy C., Geldner J., Prayer D., Feucht M. Glatiramer acetate treatment in patients with childhood and juvenile onset multiple sclerosis. Neuropediatrics. 2003; 34(3): 120–6. https://doi.org/10.1055/s-2003-41274
31. Chitnis T., Tenembaum S., Banwell B., Krupp L., Pohl D., Rostasy K., et al. Consensus statement: evaluation of new and existing therapeutics for pediatric multiple sclerosis. Mult. Scler. 2012; 18(1): 116–27. https://doi.org/10.1177/1352458511430704
32. Ghezzi A., Banwell B., Boyko A., Amato M.P., Anlar B., Blinkenberg M., et al. The management of multiple sclerosis in children: a European view. Mult. Scler. 2010; 16(10): 1258–67. https://doi.org/10.1177/1352458510375568
33. Krysko K.M., Graves J., Rensel M., Weinstock-Guttman B., Aaen G., Benson L., et al. Use of newer disease-modifying therapies in pediatric multiple sclerosis in the US. Neurology. 2018; 91(19): e1778–87. https://doi.org/10.1212/WNL.0000000000006471
34. Bar-Or A., Pachner A., Menguy-Vacheron F., Kaplan J., Wiendl H. Teriflunomide and its mechanism of action in multiple sclerosis. Drugs. 2014; 74(6): 659–74. https://doi.org/10.1007/s40265-014-0212-x
35. Chitnis T., Tardieu M., Banwell B., Gücüyener K., Deiva K., Skripchenko N., et al. Evaluation of teriflunomide in children and adolescents with relapsing ms: terikids phase 3 study design, enrollment update, and baseline data (P4.354). Neurology. 2018; 90(15 Supplement): P4.354.
36. Chitnis T., Banwell B., Kappos L., Arnold D.L., Gucuyener K., Deiva K., et al. Safety and efficacy of teriflunomide in paediatric multiple sclerosis (TERIKIDS): a multicentre, double-blind, phase 3, randomised, placebo-controlled trial. Lancet Neurol. 2021; 20(12): 1001–11. https://doi.org/10.1016/S1474-4422(21)00364-1
37. Ozel O., Vaughn C.B., Eckert S.P., Jakimovski D., Lizarraga A.A., Weinstock-Guttman B. Dimethyl Fumarate in the treatment of relapsing-remitting multiple sclerosis: patient reported outcomes and perspectives. Patient Relat. Outcome Meas. 2019; 10: 373–84. https://doi.org/10.2147/PROM.S168095
38. Alroughani R., Huppke P., Mazurkiewicz-Beldzinska M., Blaschek A., Valis M., Aaen G., et al. Delayed-release dimethyl fumarate safety and efficacy in pediatric patients with relapsing-remitting multiple sclerosis. Front. Neurol. 2020; 11: 606418. https://doi.org/10.3389/fneur.2020.606418
39. Chitnis T., Arnold D.L., Banwell B., Bruck W., Ghezzi A., Giovannoni G., et al. Trial of fingolimod versus interferon beta-1a in pediatric multiple sclerosis. N. Engl. J. Med. 2018; 379(11): 1017–27. https://doi.org/10.1056/NEJMoa1800149
40. Cohen J.A., Barkhof F., Comi G., Hartung H.P., Khatri B.O., Montalban X., et al. Oral fingolimod or intramuscular interferon for relapsing multiple sclerosis. N. Engl. J. Med. 2010; 362(5): 402–15. https://doi.org/10.1517/14656566.2010.481671
41. Di Marco J. Fingolimod treatment initiation experience: cardiac and Holter electrocardiogram findings from three phase 3 studies. Mult. Scler. 2012; 18(Suppl. 4): 55–227.
42. Gandhi S., Jakimovski D., Ahmed R., Hojnacki D., Kolb C., Weinstock-Guttman B., et al. Use of natalizumab in multiple sclerosis: current perspectives. Expert Opin. Biol. Ther. 2016; 16(9): 1151–62. https://doi.org/10.1080/14712598.2016.1213810
43. Ghezzi A., Moiola L., Pozzilli C., Brescia-Morra V., Gallo P., Grimaldi L.M., et al. Natalizumab in the pediatric MS population: results of the Italian registry. BMC Neurol. 2015; 15: 174. https://doi.org/10.1186/s12883-015-0433-y
44. Palavra F., Figueiroa S., Correia A.S., Tapadinhas F., Cerqueira J., Guerreiro R.P., et al. TyPed study: Natalizumab for the treatment of pediatric-onset multiple sclerosis in Portugal. Mult. Scler. Relat. Disord. 2021; 51: 102865. https://doi.org/10.1016/j.msard.2021.102865
45. Margoni M., Rinaldi F., Riccardi A., Franciotta S., Perini P., Gallo P. No evidence of disease activity including cognition (NEDA-3 plus) in naive pediatric multiple sclerosis patients treated with natalizumab. J. Neurol. 2020; 267(1): 100–5. https://doi.org/10.1007/s00415-019-09554-z
46. Kean J.M., Rao S., Wang M., Garcea R.L. Seroepidemiology of human polyomaviruses. PLoS Pathog. 2009; 5(3): e1000363. https://doi.org/10.1371/journal.ppat.1000363
47. Hauser S.L., Bar-Or A., Comi G., Giovannoni G., Hartung H.P., Hemmer B., et al. Ocrelizumab versus interferon beta-1a in relapsing multiple sclerosis. N. Engl. J. Med. 2017; 376(3): 221–34. https://doi.org/10.1056/NEJMoa1601277
48. Montalban X., Hauser S.L., Kappos L., Arnold D.L., Bar-Or A., Comi G., et al. Ocrelizumab versus placebo in primary progressive multiple sclerosis. N. Engl. J. Med. 2017; 376(3): 209–20. https://doi.org/10.1056/NEJMoa1606468
49. Bibinoğlu Amirov C., Saltık S., Yalçınkaya C., Tütüncü M., Saip S., Siva A., et al. Ocrelizumab in pediatric multiple sclerosis. Eur. J. Paediatr. Neurol. 2023; 43: 1–5. https://doi.org/10.1016/j.ejpn.2023.01.011
50. Jure Hunt D., Traboulsee A. Short-term outcomes of pediatric multiple sclerosis patients treated with alemtuzumab at a Canadian University multiple sclerosis clinic. Mult. Scler. J. Exp. Transl. Clin. 2020; 6(2): 2055217320926613. https://doi.org/10.1177/2055217320926613
51. Margoni M., Rinaldi F., Miante S., Franciotta S., Perini P., Gallo P. Alemtuzumab following natalizumab in highly active paediatric-onset multiple sclerosis. Mult. Scler. J. Exp. Transl. Clin. 2019; 5(3): 2055217319875471. https://doi.org/10.1177/2055217319875471
52. Burman J., Kirgizov K., Carlson K., Badoglio M., Mancardi G.L., De Luca G., et al. Autologous hematopoietic stem cell transplantation for pediatric multiple sclerosis: a registry-based study of the Autoimmune Diseases Working Party (ADWP) and Pediatric Diseases Working Party (PDWP) of the European Society for Blood and Marrow Transplantation (EBMT). Bone Marrow Transplant. 2017; 52(8): 1133–7. https://doi.org/10.1038/bmt.2017.40
Review
For citations:
Abdullaeva L.M., Bursagova B.I., Kurenkov A.L., Kuzenkova L.M. Treatment of multiple sclerosis in children: review of clinical trials. L.O. Badalyan Neurological Journal. 2023;4(1):43-51. (In Russ.) https://doi.org/10.46563/2686-8997-2023-4-1-43-51. EDN: yjkpuy