Merosin-deficient muscular dystrophy: pathogenesis, clinical manifestations and therapeutic strategies
https://doi.org/10.46563/2686-8997-2020-1-3-159-168
Abstract
Merosin-deficient muscular dystrophy is the most common form of congenital muscular dystrophies (CMD), characterized by genetic heterogeneity and a severe course in most cases. CMD pathogenesis is associated with a partial or complete absence of laminin α2 chains in the basal membrane of muscle fiber caused by a mutation in the LAMA2 gene. The clinical manifestations of LAMA2-associated muscular dystrophy vary from severe CMD (CMD 1A) with an early onset to a relatively mild course with a late onset and phenotype of limb-girdle muscular dystrophy. CMD type 1A is characterized by a delay in motor development from the first months of the life (while the vast majority of children do not master the ability to walk independently), facial muscles weakness, ptosis, ophthalmoplegia, spine rigidity, early occurrence of contractures in the shoulder, elbow, hip and knee joints, restrictive respiratory disorders, nutritional problems, such as disorders of swallowing and chewing, gastroesophageal reflux, low body weight; some children suffer from mental retardation and epilepsy.
The limb-girdle forms are accompanied by a late onset and less pronounced motor disorders; the involvement of the musculoskeletal system, as in the congenital form, is manifested by the rigidity of the spine and contractures in the joints, especially ulnar and ankle; pseudo-hypertrophies of the quadriceps and calf muscles; cardiomyopathy is often observed; respiratory failure is absent.
Based on the multisystemic nature of the disease, all patients require long-term interdisciplinary monitoring and management. There are given recommendations of the International Consensus on standards of treatment for patients with CMD, describing in detail the scope and procedure for providing them with the necessary care. Knowledge of the characteristic clinical course and pathogenesis of LAMA2-associate muscle dystrophies becomes especially relevant in the context of actively developing specific methods of their therapy. Currently, there are being investigated several therapeutic strategies for restoring and / or maintaining the structure of the basement membrane in merosin-deficient muscular dystrophy: the use of linker proteins, the initiation of polymerization of laminin α2, the genome removal technology CRISPR/Cas9, the inhibition of apoptosis.
About the Authors
Anastasiya V. MonakhovaRussian Federation
Junior research fellow, Psychoneurology and Epileptology Department, Academician Yu.E. Veltishchev Research and Clinical Institute for Pediatrics of the N.I. Pirogov Russian National Research Medical University, Moscow, 125412, Russian Federation.
e-mail: stasya1803@mail.ru
Dmitry V. Vlodavets
Russian Federation
Nikolay N. Zavadenko
Russian Federation
Elena D. Belousova
Russian Federation
Dmitry O. Kazakov
Russian Federation
Tatiana I. Baranich
Russian Federation
Vladimir S. Sukhorukov
Russian Federation
Anna G. Kupriyanova
Russian Federation
References
1. Oliveira J., Gruber A., Cardoso M., Taipa R., Fineza I., Gonçalves A., et al. LAMA2 gene mutation update: Toward a more comprehensive picture of the laminin-α2 variome and its related phenotypes. Hum. Mutat. 2018; 39(10): 1314-37. DOI: http://doi.org/10.1002/humu.23599
2. Iannaccone S.T., Castro D. Congenital muscular dystrophies and congenital myopathies. Continuum (Minneap. Minn). 2013; 19(6 Muscle Disease): 1509-34. DOI: http://doi.org/10.1212/01.CON.0000440658.03557.f1
3. Sframeli M., Sarkozy A., Bertoli M., Astrea G., Hudson J., Scoto M., et al. Congenital muscular dystrophies in the UK population: Clinical and molecular spectrum of a large cohort diagnosed over a 12-year period. Neuromuscul. Disord. 2017; 27(9): 793-803. DOI: http://doi.org/10.1016/j.nmd.2017.06.008
4. Yurchenco P.D., McKee K.K., Reinhard J.R., Rüegg M.A. Laminin-deficient muscular dystrophy: Molecular pathogenesis and structural repair strategies. Matrix Biol. 2018; 71-72: 174-87. DOI: http://doi.org/10.1016/j.matbio.2017.11.009
5. Allamand V., Guicheney P. Merosin-deficient congenital muscular dystrophy, autosomal recessive (MDC1A, MIM#156225, LAMA2 gene coding for alpha2 chain of laminin). Eur. J. Hum. Genet. 2002; 10(2): 91-4. DOI: http://doi.org/10.1038/sj.ejhg.5200743
6. Quijano-Roy S., Sparks S.E., Rutkowski A. LAMA2-Related Muscular Dystrophy. 2012 Jun 7. In: Adam M.P., Ardinger H.H., Pagon R.A., Wallace S.E., Bean L.J.H., Stephens K., et al. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993-2020.
7. Vlodavets D.V. The clinical significance of mitochondrial changes, the rationale for the use of metabolic therapy and the assessment of it’s effectiveness in congenital myopathies in children: Diss. Moscow; 2009. (in Russian)
8. Xiong H., Tan D., Wang S., Song S., Yang H., Gao K., et al. Genotype/phenotype analysis in Chinese laminin-α2 deficient congenital muscular dystrophy patients. Clin. Genet. 2015; 87(3): 233-43. DOI: http://doi.org/10.1111/cge.12366
9. Løkken N., Born A.P., Duno M., Vissing J. LAMA2-related myopathy: Frequency among congenital and limb-girdle muscular dystrophies. Muscle Nerve. 2015; 52(4): 547-53. DOI: http://doi.org/10.1002/mus.24588
10. Jones K.J., Morgan G., Johnston H., Tobias V., Ouvrier R.A., Wilkinson I., et al. The expanding phenotype of laminin alpha2 chain (merosin) abnormalities: case series and review. J. Med. Genet. 2001; 38(10): 649-57. DOI: http://doi.org/10.1136/jmg.38.10.649
11. Wang C.H., Bonnemann C.G., Rutkowski A., Sejersen T., Bellini J., Battista V., et al. Consensus statement on standard of care for congenital muscular dystrophies. J. Child Neurol. 2010; 25(12): 1559-81. DOI: http://doi.org/10.1177/0883073810381924
12. Geranmayeh F., Clement E., Feng L.H., Sewry C., Pagan J., Mein R., et al. Genotype-phenotype correlation in a large population of muscular dystrophy patients with LAMA2 mutations. Neuromuscul. Disord. 2010; 20(4): 241-50. DOI: http://doi.org/10.1016/j.nmd.2010.02.001
13. Zavadenko N.N., Vlodavets D.V. L.O. Badalyan and current progress in the study of hereditary neuromuscular diseases. Nevrologicheskiy zhurnal imeni L.O. Badalyana. 2020; 1(1): 64-72. DOI: http://doi.org/10.17816/2686-8997-2020-1-01-64-72 (in Russian)
14. Nelson I., Stojkovic T., Allamand V., Leturcq F., Bécane H.M., Babuty D., et al. Laminin α2 deficiency-related muscular dystrophy mimicking Emery-Dreifuss and collagen VI related diseases. J. Neuromuscul. Dis. 2015; 2(3): 229-40. DOI: http://doi.org/10.3233/JND-150093
15. Chan S.H.S., Foley A.R., Phadke R., Mathew A.A., Pitt M., Sewry C., et al. Limb girdle muscular dystrophy due to LAMA2 mutations: diagnostic difficulties due to associated peripheral neuropathy. Neuromuscul. Disord. 2014; 24(8): 677-83. DOI: http://doi.org/10.1016/j.nmd.2014.05.008
16. Kevelam S.H., van Engelen B.G., van Berkel C.G., Küsters B., van der Knaap M.S. LAMA2 mutations in adult-onset muscular dystrophy with leukoencephalopathy. Muscle Nerve. 2014; 49(4): 616-7. DOI: http://doi.org/10.1002/mus.24147
17. Oliveira J., Santos R., Soares-Silva I., Jorge P., Vieira E., Oliveira M.E., et al. LAMA2 gene analysis in a cohort of 26 congenital muscular dystrophy patients. Clin. Genet. 2008; 74(6): 502-12. DOI: http://doi.org/10.1111/j.1399-0004.2008.01068.x
18. Dadali E.L., Rudenskaya G.E., Shchagina O.A., Tiburkova T.B., Sukhorukov V.S., Kharlamov D.A., et al. Merosin-deficient congenital muscular dystrophy (MCMD1A). Zhurnal nevrologii i psikhiatrii im. S.S. Korsakova. 2010; 110(3): 83-9. (in Russian)
19. Alkan A., Sigirci A., Kutlu R., Aslan M., Doganay S., Yakinci C. Merosin-negative congenital muscular dystrophy: diffusion-weighted imaging findings of brain. J. Child Neurol. 2007; 22(5): 655-9. DOI: http://doi.org/10.1177/0883073807303219
20. Leite C.C., Reed U.C., Otaduy M.C., Lacerda M.T., Costa M.O., Ferreira L.G., et al. Congenital muscular dystrophy with merosin deficiency: 1H MR spectroscopy and diffusion-weighted MR imaging. Radiology. 2005; 235(1): 190-6. DOI: http://doi.org/10.1148/radiol.2351031963
21. Menezes M.J., McClenahan F.K., Leiton C.V., Aranmolate A., Shan X., Colognato H. The extracellular matrix protein laminin α2 regulates the maturation and function of the blood-brain barrier. J. Neurosci. 2014; 34(46): 15260-80. DOI: http://doi.org/10.1523/JNEUROSCI.3678-13.2014
22. Vigliano P., Vigliano P., Dassi P., Di Blasi C., Mora M., Jarre L. LAMA2 stop-codon mutation: merosin-deficient congenital muscular dystrophy with occipital polymicrogyria, epilepsy and psychomotor regression. Eur. J. Paediatr. Neurol. 2009; 13(1): 72-6. DOI: http://doi.org/10.1016/j.ejpn.2008.01.010
23. Liang Y., Li G., Chen S., He R., Zhou X., Chen Y., et al. Muscle MRI findings in a one-year-old girl with merosin-deficient congenital muscular dystrophy type 1A due to LAMA2 mutation: a case report. Biomed. Rep. 2017; 7(2): 193-6. DOI: http://doi.org/10.3892/br.2017.935
24. Kozina A.A., Shatalov P.A., Baranich T.I., Artem’eva S.B., Kupriyanova A.G., Baryshnikova N.V., et al. Clinical and molecular-genetic profiles of patients with morphological indications of congenital multicore myopathy. Vestnik Rossiyskogo gosudarstvennogo meditsinskogo universiteta. 2019; (2): 17-24. DOI: http://doi.org/10.24075/vrgmu.2019.034 (in Russian)
25. Mutovin G.R., Zhilina S.S., Zavadenko N.N., Belenikin M.S. Signs and Diseases with Traditional and Non-Traditional Inheritance [Priznaki i bolezni s traditsionnym i netraditsionnym nasledovaniem]. Moscow; 2015. (in Russian)
26. Gavassini B.F., Carboni N., Nielsen J.E., Danielsen E.R., Thomsen C., Svenstrup K., et al. Clinical and molecular characterization of limb-girdle muscular dystrophy due to LAMA2 mutations. Muscle Nerve. 2011; 44(5): 703-9. DOI: 10.1002/mus.22132
27. Falsaperla R., Praticò A.D., Ruggieri M., Parano E., Rizzo R., Corsello G., et al. Congenital muscular dystrophy: from muscle to brain. Ital. J. Pediatr. 2016; 42(1): 78. DOI: http://doi.org/10.1186/s13052-016-0289-9
28. Gawlik K.I., Harandi V.M., Cheong R.Y., Petersén Å., Durbeej M. Laminin α1 reduces muscular dystrophy in dy2J mice. Matrix Biol. 2018; 70: 36-49. DOI: http://doi.org/10.1016/j.matbio.2018.02.024
29. Yu Q., Sali A., Van der Meulen J., Creeden B.K., Gordish-Dressman H., Rutkowski A., et al. Omigapil treatment decreases fibrosis and improves respiratory rate in dy(2J) mouse model of congenital muscular dystrophy. PLoS One. 2013; 8(6): e65468. DOI: http://doi.org/10.1371/journal.pone.0065468
30. Elbaz M., Yanay N., Aga-Mizrachi S., Brunschwig Z., Kassis I., Ettinger K., et al. Losartan, a therapeutic candidate in congenital muscular dystrophy: Studies in the dy(2J) /dy(2J) Mouse. Ann. Neurol. 2012; 71(5): 699-708. DOI: http://doi.org/10.1002/ana.22694
Review
For citations:
Monakhova A.V., Vlodavets D.V., Zavadenko N.N., Belousova E.D., Kazakov D.O., Baranich T.I., Sukhorukov V.S., Kupriyanova A.G. Merosin-deficient muscular dystrophy: pathogenesis, clinical manifestations and therapeutic strategies. L.O. Badalyan Neurological Journal. 2020;1(3):159-168. (In Russ.) https://doi.org/10.46563/2686-8997-2020-1-3-159-168