Dyslexia as the most prevalent form of specific learning disabilities
https://doi.org/10.46563/2686-8997-2021-2-3-146-158
Abstract
Dyslexia is the most common form of specific learning disabilities. Dyslexia is observed in 5-17.5 % of schoolchildren, and among children with specific learning disabilities, it accounts for about 70-80 %. Usually, dyslexia manifests itself as the inability to achieve an appropriate level of reading skills development that would be proportional to their intellectual abilities and writing and spelling skills. Secondary consequences of dyslexia may include problems in reading comprehension and reduced reading experience that can impede the growth of vocabulary and background skills. The review discusses neurological management of reading and writing as complex higher mental functions, including many components that are provided by various brain areas. The principles of dyslexia classification, the main characteristics of its traditionally defined forms are given: phonemic, optical, mnestic, semantic, agrammatic. The article analyzes the cerebral mechanisms of dyslexia development, the results of studies using neuropsychological methods, functional neuroimaging, and the study of the brain connectome. The contribution to dyslexia development of disturbances in phonological awareness, rapid automated naming (RAN), the volume of visual attention (VAS), components of the brain executive functions is discussed. The origin of emotional disorders in children with dyslexia, risk factors for dyslexia development (including genetic predisposition) are considered. Dyslexia manifestations in children are listed, about which their parents seek the advice of a specialist for the first time. In the process of diagnosing dyslexia, attention should be paid to the delay in the child’s speech development, cases of speech and language development disorders and specific learning disabilities among family members. It is necessary to consider possible comorbidity of dyslexia in a child with attention deficit hyperactivity disorder, dyscalculia, developmental dyspraxia, disorders of emotional control and brain executive functions. Timely diagnosis determines the effectiveness of early intervention programs based on an integrated multimodal approach.
About the Author
Nikolay N. ZavadenkoRussian Federation
MD, PhD, DSci, professor, Head of the Neurology, Neurosurgery and Medical Genetics Department named after academician L.O. Badalyan, Faculty of Pediatrics, Pirogov Russian National Research Medical University, Moscow, 125412, Russian Federation.
e-mail: zavadenko@mail.ru
References
1. Ravich-Shcherbo I.V., Maryutina T.M., Grigorenko E.L. Psychogenetics [Psikhogenetika]. Moscow: Aspekt Press; 2008. (in Russian)
2. Shaywitz S.E., Shaywitz B.A. Dyslexia (specific reading disability). Biol. Psychiatry. 2005; 57(11): 1301–9. https://doi.org/10.1016/j.biopsych.2005.01.043
3. Morsanyi K., van Bers B.M.C.W., McCormack T., McGourty J. The prevalence of specific learning disorder in mathematics and comorbidity with other developmental disorders in primary school-age children. Br. J. Psychol. 2018; 109(4): 917–40. https://doi.org/10.1111/bjop.12322
4. Peters L., Ansari D. Are specific learning disorders truly specific, and are they disorders? Trends Neurosci. Educ. 2019; 17(100115): 1–8. https://doi.org/10.1016/j.tine.2019.100115
5. Willcutt E.G., McGrath L.M., Pennington B.F., Keenan J.M., DeFries J.C., Olson R.K., et al. Understanding comorbidity between specific learning disabilities. New Dir. Child. Adolesc. Dev. 2019; 2019(165): 91–109. https://doi.org/10.1002/cad.20291
6. McDowell M. Specific learning disability. J. Paediatr. Child. Health. 2018; 54(10): 1077–83. https://doi.org/10.1111/jpc.14168
7. Nachshon O., Farah R., Horowitz-Kraus T. Decreased functional connectivity between the Left Amygdala and Frontal Regions interferes with reading, emotional, and executive functions in children with reading difficulties. Front. Hum. Neurosci. 2020; 14: 104. https://doi.org/10.3389/fnhum.2020.00104
8. Kornev A.N. Reading and Writing Disorders in Children [Narusheniya chteniya i pis’ma u detey]. St. Petersburg: Rech’; 2003. (in Russian)
9. Norton E.S., Beach S.D., Gabrieli J.D.E. Neurobiology of dyslexia. Curr. Opin. Neurobiol. 2015; 30: 73–8. https://doi.org/10.1016/j.conb.2014.09.007
10. Habib M. The neurological basis of developmental dyslexia and related disorders: a reappraisal of the temporal hypothesis, twenty years on. Brain. Sci. 2021; 11(6): 708. https://doi.org/10.3390/brainsci11060708
11. Surushkina S.Yu., Yakovenko E.A., Chutko L.S., Didur M.D. Dyslexia as a multideficit disorder. Zhurnal nevrologii i psikhiatrii im. S.S. Korsakova. 2020; 120(7): 142–8. https://doi.org/10.17116/jnevro2020120071142 (in Russian)
12. Diagnostic and Statistical Manual of Mental Disorders. Washington: American Psychiatric Association; 2013.
13. Definition of Dyslexia – International Dyslexia Association. Baltimore, MD: International Dyslexia Association; 2011. Available at: https://dyslexiaida.org/definition-of-dyslexia/
14. Zavadenko N.N., Nemkova S.A. Developmental Disorders and Cognitive Dysfunctions in Children with Diseases of the Nervous System [Narusheniya razvitiya i kognitivnye disfunktsii u detey s zabolevaniyami nervnoy sistemy]. Moscow: MK; 2016. (in Russian)
15. Luriya A.R. Writing and Speech: Neuro-Linguistic Research [Pis’mo i rech’: Neyrolingvisticheskie issledovaniya]. Moscow: Akademiya; 2002. (in Russian)
16. Lalaeva R.I. Reading Disorders and Ways of Their Correction in Younger Schoolchildren [Narusheniya chteniya i puti ikh korrektsii u mladshikh shkol’nikov]. St. Petersburg: Lenizdat; 2002. (in Russian)
17. Richlan F. The functional neuroanatomy of letter-speech sound integration and its relation to brain abnormalities in developmental dyslexia. Front. Hum. Neurosci. 2019; 13: 21. https://doi.org/10.3389/fnhum.2019.00021
18. Valdois S., Reilhac C., Ginestet E., Bosse M.L. Varieties of cognitive profiles in poor readers: evidence for a vas-impaired subtype. J. Learn. Disabil. 2021; 54(3): 221–33. https://doi.org/10.1177/0022219420961332
19. Lazzaro G., Varuzza C., Costanzo F., Fucà E., Di Vara S., De Matteis M.E., et al. Memory deficits in children with developmental dyslexia: a reading-level and chronological-age matched design. Brain. Sci. 2021; 11(1): 40. https://doi.org/10.3390/brainsci11010040
20. Menghini D., Finzi A., Benassi M., Bolzani R., Facoetti A., Giovagnoli S., et al. Different underlying neurocognitive deficits in developmental dyslexia: a comparative study. Neuropsychol. 2010; 48(4): 863–72. https://doi.org/10.1016/j.neuropsychologia.2009.11.003
21. Bogaerts L., Szmalec A., Hachmann W.M., Page M.P., Duyck W. Linking memory and language: evidence for a serial-order learning impairment in dyslexia. Res. Dev. Disabil. 2015; 43-44: 106–22. https://doi.org/10.1016/j.ridd.2015.06.012
22. Majerus S., Cowan N. The nature of verbal short-term impairment in dyslexia: the importance of serial order. Front. Psychol. 2016; 7: 1522. https://doi.org/10.3389/fpsyg.2016.01522
23. Cowan N., Hogan T.P., Alt M., Green S., Cabbage K.L., Brinkley S., et al. Short-term memory in childhood dyslexia: deficient serial order in multiple modalities. Dyslexia. 2017; 23(3): 209–33. https://doi.org/10.1002/dys.1557
24. Simos P.G., Fletcher J.M., Bergman E., Breier J.I., Foorman B.R., Castillo E.M., et al. Dyslexia-specific brain activation profile becomes normal following successful remedial training. Neurol. 2002; 58(8): 1203–13. https://doi.org/10.1212/wnl.58.8.1203
25. McNorgan C. The connectivity fingerprints of highly-skilled and disordered reading persist across cognitive domains. Front. Comput. Neurosci. 2021; 15: 590093. https://doi.org/10.3389/fncom.2021.590093
26. Randazzo M., Greenspon E.B., Booth J.R., McNorgan C. Children with reading difficulty rely on unimodal neural processing for phonemic awareness. Front. Hum. Neurosci. 2019; 13: 390. https://doi.org/10.3389/fnhum.2019.00390
27. Morken F., Helland T., Hugdahl K., Specht K. Reading in dyslexia across literacy development: a longitudinal study of effective connectivity. Neuroimage. 2017; 144(Pt. A): 92–100. https://doi.org/10.1016/j.neuroimage.2016.09.060
28. Pugh K.R., Mencl W.E., Shaywitz B.A., Shaywitz S.E., Fulbright R.K., Constable R.T., et al. The angular gyrus in developmental dyslexia: task-specific differences in functional connectivity within posterior cortex. Psychol. Sci. 2000; 11(1): 51–6. https://doi.org/10.1111/1467-9280.00214
29. Horowitz-Kraus T., Vannest J.J., Kadis D., Cicchino N., Wang, Y.Y., Holland S.K. Reading acceleration training changes brain circuitry in children with reading difficulties. Brain. Behav. 2014; 4(6): 886–902. https://doi.org/10.1002/brb3.281
30. Horowitz-Kraus T., Buck C., Dorrmann D. Altered neural circuits accompany lower performance during narrative comprehension in children with reading difficulties: an fMRI study. Ann. Dyslexia. 2016; 66(3): 301–18. https://doi.org/10.1007/s11881-016-0124-4
31. Horowitz-Kraus T., Holland S.K. Greater functional connectivity between reading and error-detection regions following training with the reading acceleration program in children with reading difficulties. Ann. Dyslexia. 2015; 65(1): 1–23. https://doi.org/10.1007/s11881-015-0096-9
32. Levinson O., Hershey A., Farah R., Horowitz-Kraus T. Altered functional connectivity of the executive functions network during a Stroop task in children with reading difficulties. Brain. Connect. 2018; 8(8): 516–25. https://doi.org/10.1089/brain.2018.0595
33. Van der Mark S., Klaver P., Bucher K., Maurer U., Schulz E., Brem S., et al. The left occipitotemporal system in reading: disruption of focal fMRI connectivity to left inferior frontal and inferior parietal language areas in children with dyslexia. Neuroim. 2011; 54(3): 2426–36. https://doi.org/10.1016/j.neuroimage.2010.10.002
34. De Jong P.F., van den Boer M. The relation of visual attention span with serial and discrete rapid automatized naming and reading. J. Exp. Child. Psychol. 2021; 207: 105093. https://doi.org/10.1016/j.jecp.2021.105093
35. Melby-Lervåg M., Lyster S.A.H., Hulme C. Phonological skills and their role in learning to read: A meta-analytic review. Psychol. Bull. 2012; 138(2): 322–52. https://doi.org/10.1037/a0026744
36. Rakhlin N.V., Mourgues C., Cardoso-Martins C., Kornev A.N., Grigorenko E.L. Orthographic processing is a key predictor of reading fluency in good and poor readers in a transparent orthography. Contemp. Educ. Psychol. 2019; 56: 250–61. https://doi.org/10.1016/j.cedpsych.2018.12.002
37. Grigorenko E.L. Developmental dyslexia: an update on genes, brains and environments. J. Child Psychol. Psychiatr. 2001; 42(1): 91–125.
38. Landerl K., Freudenthaler H.H., Heene M., de Jong P.F., Desrochers A., Manolitsis G., et al. Phonological awareness and rapid automatized naming as longitudinal predictors of reading in five alphabetic orthographies with varying degrees of consistency. Sci. Stud. Read. 2019; 23(3): 220–34. https://doi.org/10.1080/10888438.2018.1510936
39. Powell D., Stainthorp R., Stuart M., Garwood H., Quinlan P. An experimental comparison between rival theories of rapid automatized naming performance and its relationship to reading. J. Exp. Child Psychol. 2007; 98(1): 46–68. https://doi.org/10.1016/j.jecp.2007.04.003
40. Araujo S., Pacheco A., Faisca L., Petersson K.M., Reis A. Visual rapid naming and phonological abilities: different subtypes in dyslexic children. Int. J. Psychol. 2010; 45(6): 443–52. https://doi.org/10.1080/00207594.2010.499949
41. Goswami U. Sensory theories of developmental dyslexia: three challenges for research. Nat. Rev. Neurosci. 2015; 16(1): 43–54. https://doi.org/10.1038/nrn3836
42. Antzaka A., Martin C., Caffarra S., Schlöffel S., Carreiras M., Lallier M. The effect of orthographic depth on letter string processing: the case of visual attention span and rapid automatized naming. Reading and Writing. 2018; 31(3): 583–605. https://doi.org/10.1007/s11145-017-9799-0
43. Saksida A., Ianuzzi S., Bogliotti C., Chaix Y., Démonte J.F., Bricout L., et al. Phonological skills, visual attention span and visual stress in developmental dyslexia. Dev. Psychol. 2016; 52(10): 1503–16. https://doi.org/10.1037/dev0000184
44. Peyrin C., Lallier M., Démonet J.F., Pernet C., Baciu M., LeBas J.F., et al. Neural dissociation of phonological and visual attention span disorders in developmental dyslexia: fMRI evidence from two case studies. Brain Lang. 2012; 120(3): 381–94. https://doi.org/10.1016/j.bandl.2011.12.015
45. Chen N.T., Zheng M., Connie S.H. Examining the visual attention span deficit hypothesis in Chinese developmental dyslexia. Reading and Writing. 2019; 32(3): 639–62. https://doi.org/10.1007/s11145-018-9882-1
46. Pennington B.F. From single to multiple deficit models of developmental disorders. Cognition. 2006; 101(2): 385–413. https://doi.org/10.1016/j.cognition.2006.04.008
47. Davis K., Margolis A.E., Thomas L., Huo Z., Marsh R. Amygdala sub-regional functional connectivity predicts anxiety in children with reading disorder. Dev. Sci. 2018; 21(5): e12631. https://doi.org/10.1111/desc.12631
48. Nelson J.M., Harwood H. Learning disabilities and anxiety: A meta-analysis. J. Learn. Disabil. 2011; 44(1): 3–17. https://doi.org/10.1177/0022219409359939
49. Thakkar A.N., Karande S., Bala N., Sant H., Gogtay N.J., Sholapurwala R. Is anxiety more common in school students with newly diagnosed specific learning disabilities? A cross-sectional questionnaire-based study in Mumbai, Maharashtra, India. J. Postgrad. Med. 2016; 62(1): 12–9. https://doi.org/10.4103/0022-3859
50. Ochsner K.N., Gross J.J. The cognitive control of emotion. Trends Cogn. Sci. 2005; 9(5): 242–9. https://doi.org/10.1016/j.tics.2005.03.010
51. Etkin A., Klemenhagen K.C., Dudman J.T., Rogan M.T., Hen R., Kandel E.R., et al. Individual differences in trait anxiety predict basolateral amygdala response only to unconsciously processed fearful faces. Neuron. 2004; 44(6): 1043–55. https://doi.org/10.1016/j.neuron.2004.12.006
52. Snowling M.J., Melby-Lervåg M. Oral language deficits in familial dyslexia: A meta-analysis and review. Psychol. Bull. 2016; 142(5): 498–545. https://doi.org/10.1037/bul0000037
53. Esmaeeli Z., Lundetrae K., Kyle F.E. What can parents’ self-report of reading difficulties tell us about their children’s emergent literacy at school entry? Dyslexia. 2018; 24(1): 84–105. https://doi.org/10.1002/dys.1571
54. Catts H.W., Fey M.E., Tomblin J.B., Zhang X. A longitudinal investigation of reading outcomes in children with language impairments. J. Speech. Lang. Hear. Res. 2002; 45(6):1142–57. https://doi.org/10.1044/1092-4388(2002/093)
55. Zavadenko N.N., Davydova L.A. Neurological and neurodevelopmental disorders in preterm-born children (with extremely low, very low or low body weight). Zhurnal nevrologii i psikhiatrii im. S.S. Korsakova. 2019; 119(12): 12–9. https://doi.org/10.17116/jnevro201911912112 (in Russian)
56. Guarini A., Bonifacci P., Tobia V., Alessandroni R., Faldella G., Sansavini A. The profile of very preterm children on academic achievement. A cross-population comparison with children with specific learning disorders. Res. Dev. Disabil. 2019; 87: 54–63. https://doi.org/10.1016/j.ridd.2019.02.001
57. Romo M.L., McVeigh K.H., Jordan P., Stingone J.A., Chan P.Y., Askew G.L. Birth characteristics of children who used early intervention and special education services in New York City. J. Public Health (Oxf.). 2020; 42(4): e401–11. https://doi.org/10.1093/pubmed/fdz179
58. Francks C., MacPhie I.L., Monaco A.P. The genetic basis of dyslexia. Lancet Neurol. 2002; (8): 483–90. https://doi.org/10.1016/s1474-4422(02)00221-1
59. Hensler B.S., Schatschneider C., Taylor J., Wagner R.K. Behavioral genetic approach to the study of dyslexia. J. Dev. Behav. Pediatr. 2010; 31(7): 525–32. https://doi.org/10.1097/DBP.0b013e3181ee4b70
60. Olson R.K., Forsberg H., Gayan J., DeFries J.C. A behavioral-genetic analysis of reading disabilities and component processes. In: Klein R.M., McMullen P.A., eds. Converging Methods for Understanding Reading and Dyslexia. Cambridge: MIT Press; 1999: 133–53.
61. Francks C., Fisher S.E., Olson R.K., Pennington B.F., Smith S.D., DeFries J.C., et al. Fine mapping of the chromosome 2p12-16 dyslexia susceptibility locus: Quantitative association analysis and positional candidate genes SEMA4F and OTX. Psychiatr. Genet. 2002; 12(1): 35–41. https://doi.org/10.1097/00041444-200203000-00005
62. Georgitsi M., Dermitzakis I., Soumelidou E., Bonti E. The polygenic nature and complex genetic architecture of specific learning disorder. Brain Sci. 2021; 11(5): 631. https://doi.org/10.3390/brainsci11050631
63. Shaywitz S.E., Fletcher J.M., Holahan J.M., Shneider A.E., Marchione K.E., Stuebing K.K., et al. Persistence of dyslexia: the Connecticut longitudinal study at adolescence. Pediatrics. 1999; 104(6): 1351–9. https://doi.org/10.1542/peds.104.6.1351
64. Di Ianni M., Wilsher C.R., Blank M.S., Conners C.K., Chase C.H., Funkenstein H.H., et al. The effects of piracetam in children with dyslexia. J. Clin. Psychopharmacol. 1985; 5(5): 272–8. https://doi.org/10.1097/00004714-198510000-00004
65. Levi G. A study of piracetam in the pharmacological treatment of learning disabilities. In: Bakker D., ed. Child Health and Development, Developmental Dyslexia and Learning Disorders. Volume 5. Basel: Karger; 1987: 129–39.
66. Van Hout A., Giurgea D. The effects of piracetam in dyslexia. Approche Neuropsychol. Apprentissage Enfance. 1990; 2(3): 145–52.
67. Wilsher C., Atkins G., Mansfield P. Effect of piracetam on dyslexics’ reading ability. J. Learn. Disabil. 1985; 18(1): 19–25. https://doi.org/10.1177/002221948501800105
68. Wilsher C.R., Bennett D., Chase C.H., Conners C.K., Di Ianni M., Feagans L., et al. Piracetam and dyslexia: effects on reading tests. J. Clin. Psychopharmacol. 1987; 7(4): 230–7. https://doi.org/10.1097/00004714-198708000-00004
Review
For citations:
Zavadenko N.N. Dyslexia as the most prevalent form of specific learning disabilities. L.O. Badalyan Neurological Journal. 2021;2(3):146-158. (In Russ.) https://doi.org/10.46563/2686-8997-2021-2-3-146-158