The use of the drug ataluren for the treatment of patients with Duchenne muscular dystrophy in real clinical practice
https://doi.org/10.46563/2686-8997-2024-5-2-79-89
EDN: ypfabi
Abstract
Aim. To analyze anamnestic, clinical and paraclinical indicators in patients with Duchenne muscular dystrophy (DMD) receiving pathogenetic therapy with a drug for correcting nonsense mutations in the dmd gene — ataluren (translarna), to evaluate the safety of therapy and the dynamics of motor disorders in real clinical practice against the background of use drug.
Materials and methods. The study included 24 patients with DMD receiving ataluren who were hospitalized at the Center for Pediatric Psychoneurology of the National Medical Research Center for Children’s Health of the Ministry of Health of the Russian Federation for the period from January 2019 to February 2024. An analysis of anamnestic data, the most common clinical manifestations and paraclinical indicators, assessed the safety of the drug by the presence of serious adverse events leading to discontinuation of therapy, and the effectiveness of treatment using functional scales of motor activity: the “North Star” scale and the 6-minute walk test.
Results. The age of onset of independent walking was 14.3 ± 2.6 months, the age of onset of the disease was 3.3 ± 2.6 years, the age of visiting a doctor was 4.25 ± 2.00 years, the age of diagnosis was 5.3 ± 2,3 years, age of initiation of glucocorticosteroids (GCS) — 6.3 ± 1.8 years. GCS in an adequate dose and regimen was taken by 13 (56%) patients. Cognitive, emotional-volitional and behavioral disorders were registered in 17 (70.8%) patients, excess body weight — in 6 (25%), and stiffness of the ankle joints — in 9 (37.5%).Pulmonary function was analyzed in 16 (66.6%) patients, of which a decrease was detected in 1 boy. No patient experienced a serious adverse event leading to discontinuation of ataluren. When assessing the effectiveness of treatment in a group of patients under 7 years of age (n = 11), 10 (91%) children showed improvement or stabilization of their condition according to the 6-minute walk test; in 6 (54.5%) — improvement in motor skills when analyzing scores on the “North Star” scale; in 5 (45.5%) the condition was stabilized. the group of patients over 7 years of age (n = 13), according to the 6-minute walk test, 4 (30.8%) children showed stabilization of the condition, 7 (53.8%) had disease progression, 2 (15.4%) the child entered the non-ambulatory stage. When analyzing scores on the “North Star” scale, 1 (7.7%) child showed improvement in performance, 6 (46.1%) — stabilization, 4 (30.8%) — decrease, 2 (15.4%) — loss outpatient.
Conclusion. Early diagnosis of the disease and timely initiation of therapy in compliance with all standards of management of patients with DMD are crucial for maintaining motor function. Pathogenetic therapy with ataluren increases the duration of the outpatient stage, improving and/or stabilizing the motor skills of patients.
Compliance with ethical standards. Voluntary informed consent was obtained from the legal representatives of all patients.
Contribution:
Popovich S.G. — concept and design of the article, text writing, editing;
Kuzenkova L.M. — concept and design of the article, text writing, editing;
Uvakina E.V. — concept and design of the article, editing;
Podkletnova T.V. — editing;
Kozhevnikova O.V. — editing;
Bushueva T.V. — editing;
Zvonkova N.G. — editing.
All co-authors — approval of the final version of the article, responsibility for the integrity of all parts of the article
Acknowledgment. The study had no sponsorship.
Conflict of interest. Popovich S.G., Kuzenkova L.M., Uvakina E.V., Podkletnova T.V. are lecturers receiving honoraria from the pharmaceutical company PTC Therapeutics LLC.
Received May 31, 2024
Accepted June 20, 2024
Published July 31, 2024
About the Authors
Sofia G. PopovichRussian Federation
MD, junior researcher, neurologist of the Center of child psychoneurology, National Medical Research Center for Children’s Health, Moscow, 111999, Russian Federation
e-mail: popovich.sg@nczd.ru
Ludmila M. Kuzenkova
Russian Federation
PhD, DSci., Prof., Head of the Center for Psychoneurology, Head of Department of Neuropsychiatry and Neurorehabilitation, National Medical Research Center for Children’s Health, Moscow, 119991, Russian Federation
e-mail: kuzenkova@nczd.ru
Evgeniya V. Uvakina
Russian Federation
MD, junior researcher of the Center of child psychoneurology, National Medical Research Center for Children’s Health, Moscow, 119991, Russian Federation
e-mail: uvakina.ev@nczd.ru
Tatyana V. Podkletnova
Russian Federation
MD, PhD, senior researcher of the Center for Child Psychoneurology of the National Medical Research Center for Children’s Health, Moscow, 119991, Russian Federation
e-mail: tvp80@mail.ru
Olga V. Kozhevnikova
Russian Federation
MD, PhD, DSci., Head of the Center of Psychoneurology, head of the Department of Psychoneurology and neurorehabilitation of the National Medical Research Center for Children’s Health, Moscow, 119991, Russian Federation
e-mail: fd@nczd.ru
Tatyana V. Bushueva
Russian Federation
MD, PhD, DSci., Leading Researcher of the National Medical Research Center for Children’s Health, Moscow, 119991, Russian Federation
e-mail: tbushueva1@yandex.ru
Nataliya G. Zvonkova
Russian Federation
MD, PhD, senior researcher, National Medical Research Center for Children’s Health, Moscow, 119991, Russian Federation; Associate Professor of the Department of Pediatrics and Pediatric Rheumatology, Clinical Institute of Child Health named after N.F. Filatov, First Moscow State Medical University named after I.M. Sechenov (Sechenov University), Moscow, 119435, Russian Federation
e-mail: zvonkova@nczd.ru
References
1. Emery A.E. The muscular dystrophies. Lancet. 2002; 359(9307): 687–95. https://doi.org/1016/S0140-6736(02)07815-7
2. Davies K.E., Pearson P.L., Harper P.S., Murray J.M., O’Brien T., Sarfarazi M., et al. Linkage analysis of two cloned DNA sequences flanking the Duchenne muscular dystrophy locus on the short arm of the human X chromosome. Nucleic Acids Res. 1983; 11(8): 2303–12. https://doi.org/1093/nar/11.8.2303
3. Moat S.J., Bradley D.M., Salmon R., Clarke A., Hartley L. Newborn bloodspot screening for Duchenne muscular dystrophy: 21 years experience in Wales (UK). Eur. J. Hum. Genet. 2013; 21(10): 1049–53. https://doi.org/1038/ejhg.2012.301
4. Parent Project Muscular Dystrophy. About Duchenne. Available at: https://parentprojectmd.org/about-duchenne/
5. Gao Q.Q., McNally E.M. The dystrophin complex: structure, function, and implications for therapy. Compr. Physiol. 2015; 5(3): 1223–39. https://doi.org/1002/cphy.c140048
6. Falzarano M.S., Scotton C., Passarelli C., Ferlini A. Duchenne muscular dystrophy: from diagnosis to therapy. Molecules. 2015; 20(10): 18168–84. https://doi.org/3390/molecules201018168
7. Ricotti V., Ridout D.A., Pane M., Main M., Mayhew A., Mercuri E., et al. The NorthStar Ambulatory Assessment in Duchenne muscular dystrophy: considerations for the design of clinical trials. J. Neurol. Neurosurg. Psychiatry. 2016; 87(2): 149–55. https://doi.org/1136/jnnp-2014-309405
8. Sienko Thomas S., Buckon C.E., Nicorici A., Bagley A., McDonald C.M., Sussman M.D. Classification of the gait patterns of boys with Duchenne muscular dystrophy and their relationship to function. J. Child Neurol. 2010; 25(9): 1103–9. https://doi.org/10.1177/0883073810371002
9. Bushby K., Finkel R., Birnkrant D.J., Case L.E., Clemens P.R., Cripe L., et al. Diagnosis and management of Duchenne muscular dystrophy, part 1: diagnosis, and pharmacological and psychosocial management. Lancet Neurol. 2010; 9(1): 77–93. https://doi.org/10.1016/s1474-4422(09)70271-6
10. Verma S., Anziska Y., Cracco J. Review of Duchenne muscular dystrophy (DMD) for the pediatricians in the community. Clin. Pediatr. 2010; 49(11): 1011–7. https://doi.org/10.1177/0009922810378738
11. Hartnett M.J., Lloyd-Puryear M.A., Tavakoli N.P., Wynn J., Koval-Burt C.L., Gruber D., et al. Newborn screening for Duchenne muscular dystrophy: first year results of a population-based pilot. Int. J. Neonatal. Screen. 2022; 8(4): 50. https://doi.org/3390/ijns8040050
12. Awano H., Nambu Y., Itoh C., Kida A., Yamamoto T., Lee T., et al. Longitudinal data of serum creatine kinase levels and motor, pulmonary, and cardiac functions in 337 patients with Duchenne muscular dystrophy. Muscle Nerve. 2024; 69(5): 604–12. https://doi.org/10.1002/mus.28073
13. Zatz M., Rapaport D., Vainzof M., Passos-Bueno M.R., Bortolini E.R., Pavanello de C.R., et al. Serum creatine-kinase (CK) and pyruvate-kinase (PK) activities in Duchenne (DMD) as compared with Becker (BMD) muscular dystrophy. J. Neurol. Sci. 1991; 102(2): 190–6. https://doi.org/10.1016/0022-510x(91)90068-i
14. Ciafaloni E., Fox D.J., Pandya S., Westfield C.P., Puzhankara S., Romitti P.A., et al. Delayed diagnosis in Duchenne muscular dystrophy: data from the Muscular Dystrophy Surveillance, Tracking, and Research Network (MD STARnet). J. Pediatr. 2009; 155(3): 380–5. https://doi.org/1016/j.jpeds.2009.02.007
15. Broomfield J., Hill M., Chandler F. et al. Developing a natural history model for Duchenne muscular dystrophy. Pharmacoecon. Open. 2024; 8(1): 79–89. https://doi.org/10.1007/s41669-023-00450-x
16. Eagle M., Baudouin S.V., Chandler C., Giddings D.R., Bullock R., Bushby K. Survival in Duchenne muscular dystrophy: improvements in life expectancy since 1967 and the impact of home nocturnal ventilation. Neuromuscul. Disord. 2002; 12(10): 926–9. https://doi.org/10.1016/s0960-8966(02)00140-2
17. Landfeldt E., Thompson R., Sejersen T., McMillan H.J., Kirschner J., Lochmüller H. Life expectancy at birth in Duchenne muscular dystrophy: a systematic review and meta-analysis. Eur. J. Epidemiol. 2020; 35(7): 643–53. https://doi.org/10.1007/s10654-020-00613-8
18. Clinical recommendations. Progressive Duchenne muscular dystrophy. Becker’s progressive muscular dystrophy; 2023. (in Russian)
19. Ferizovic N., Summers J., de Zárate I.B.O., Werner C., Jiang J., Landfeldt E., et al. Prognostic indicators of disease progression in Duchenne muscular dystrophy: A literature review and evidence synthesis. PLoS One. 2022; 17(3): e0265879. https://doi.org/10.1371/journal.pone.0265879
20. Weber F.J., Latshang T.D., Blum M.R., Kohler M., Wertli M.M. Prognostic factors, disease course, and treatment efficacy in Duchenne muscular dystrophy: A systematic review and meta-analysis. Muscle Nerve. 2022; 66(4): 462–70. https://doi.org/1002/mus.27682
21. Viltolarsen Uses, Side Effects & Warnings. Available at: https://drugs.com/mtm/viltolarsen.html
22. Lim K.R.Q., Maruyama R., Yokota T. Eteplirsen in the treatment of Duchenne muscular dystrophy. Drug Des. Devel. Ther. 2017; 11: 533–45. https://doi.org/2147/DDDT.S97635
23. Assefa M., Gepfert A., Zaheer M., Hum J.M., Skinner B.W. Casimersen (AMONDYS 45™): An antisense oligonucleotide for Duchenne muscular dystrophy. Biomedicines. 2024; 12(4): 912. https://doi.org/3390/biomedicines12040912
24. Bladen C.L., Salgado D., Monges S., Foncuberta M.E., Kekou K., Kosma K., et al. The TREAT-NMD DMD Global Database: analysis of more than 7,000 Duchenne muscular dystrophy mutations. Hum. Mutat. 2015; 36(4): 395–402. https://doi.org/10.1002/humu.22758
25. Mah J.K. Current and emerging treatment strategies for Duchenne muscular dystrophy. Neuropsychiatr. Dis. Treat. 2016; 12: 1795–807. https://doi.org/10.2147/ndt.s93873
26. Zinina E., Bulakh M., Chukhrova A., Ryzhkova O., Sparber P., Shchagina O., et al. Specificities of the DMD gene mutation spectrum in Russian patients. Int. J. Mol. Sci. 2022; 23(21):12710. https://doi.org/10.3390/ijms232112710
27. Welch E.M., Barton E.R., Zhuo J., Tomizawa Y., Friesen W.J., Trifillis P., et al. PTC124 targets genetic disorders caused by sense mutations. Nature. 2007; 447(7140): 87–91. https://doi.org/10.1038/nature05756
28. EMA SMH. Translarna, INN-ataluren. Available at: https://www.ema.europa.eu/en/documents/overview/translarna-epar-medicine-overview_en.pdf
29. McDonald C.M., Henricson E.K., Abresch R.T., Florence J., Eagle M., Gappmaier E., et al. The 6-minute walk test and other clinical endpoints in Duchenne muscular dystrophy: reliability, concurrent validity, and minimal clinically important differences from a multicenter study. Muscle Nerve. 2013; 48(3): 357–68. https://doi.org/1002/mus.23905
30. Muntoni F., Domingos J., Manzur A.Y., Mayhew A., Guglieri M., Sajeev G., et al. Categorising trajectories and individual item changes of the North Star Ambulatory Assessment in patients with Duchenne muscular dystrophy. PLoS One. 2019; 14(9): e0221097. https://doi.org/1371/journal.pone.0221097
31. WHO Multicentre Growth Reference Study Group. WHO Motor Development Study: windows of achievement for six gross motor development milestones. Acta Paediatr. Suppl. 2006; 450: 86–95. https://doi.org/1111/j.1651-2227.2006.tb02379.x
32. Norcia G., Lucibello S., Coratti G., Onesimo R., Pede E., Ferrantini G., et al. Early gross motor milestones in Duchenne muscular dystrophy. J. Neuromuscul. Dis. 2021; 8(4): 453–6. https://doi.org/3233/JND-210640
33. Mercuri E., Pane M., Cicala G., Brogna C., Ciafaloni E. Detecting early signs in Duchenne muscular dystrophy: comprehensive review and diagnostic implications. Front. Pediatr. 2023; 11: 1276144. https://doi.org/3389/fped.2023.1276144
34. Duan D., Goemans N., Takeda S., Mercuri E., Aartsma-Rus A. Duchenne muscular dystrophy. Nat. Rev. Dis. Primers. 2021; 7(1): 13. https://doi.org/10.1038/s41572-021-00248-3
35. Markati T., Oskoui M., Farrar M.A., Duong T., Goemans N., Servais L. Emerging therapies for Duchenne muscular dystrophy. Lancet Neurol. 2022; 21(9): 814–29. https://doi.org/10.1016/S1474-4422(22)00125-9
36. Guglieri M., Bushby K., McDermott M.P., Hart K.A., Tawil R., Martens W.B., et al. Effect of different corticosteroid dosing regimens on clinical outcomes in boys with Duchenne muscular dystrophy: a randomized clinical trial. JAMA. 2022; 327(15): 1456–68. https://doi.org/10.1001/jama.2022.4315
37. Gloss D., Moxley R.T. 3rd, Ashwal S., Oskoui M. Practice guideline update summary: Corticosteroid treatment of Duchenne muscular dystrophy: Report of the Guideline Development Subcommittee of the American Academy of Neurology. Neurology. 2016; 86(5): 465–72. https://doi.org/1212/WNL.0000000000002337
38. Lamb M.M., West N.A., Ouyang L., Yang M., Weitzenkamp D., James K., et al. Corticosteroid treatment and growth patterns in ambulatory males with Duchenne muscular dystrophy. J. Pediatr. 2016; 173: 207–13.e. https://doi.org/10.1016/j.jpeds.2016.02.067
39. Lebel D.E., Corston J.A., McAdam L.C., Biggar W.D., Alman B.A. Glucocorticoid treatment for the prevention of scoliosis in children with Duchenne muscular dystrophy: long-term follow-up. J. Bone Joint Surg. Am. 2013; 95(12): 1057–61. https://doi.org/10.2106/jbjs.l.01577
40. Birnkrant D.J., Bushby K., Bann C.M., Apkon S.D., Blackwell A., Brumbaugh D., et al. Diagnosis and management of Duchenne muscular dystrophy, part 1: diagnosis, and neuromuscular, rehabilitation, endocrine, and gastrointestinal and nutritional management. Lancet Neurol. 2018; 17(3): 251–67. https://doi.org/1016/S1474-4422(18)30024-3
41. Banihani R., Smile S., Peds D.M., Yoon G., Dupuis A., Mosleh M., et al. Cognitive and neurobehavioral profile in boys with Duchenne muscular dystrophy. J. Child Neurol. 2015; 30: 1472–82. https://doi.org/10.1177/0883073815570154
42. Mori-Yoshimura M., Mizuno Y., Yoshida S., Ishihara N., Minami N., Morimoto E., et al. Psychiatric and neurodevelopmental aspects of Becker muscular dystrophy. Neuromuscul. Disord. 2019; 29(12): 930–9. https://doi.org/1016/j.nmd.2019.09.006
43. Gremyakova T.A., Artem’eva S.B., Vashakmadze N.D., Vitkovskaya I.P., Guzeva V.I., Guzeva O.V., et al. The concept of “ambulatory” and “non-ambulatory” in patients with Duchenne muscular dystrophy: definitions and criteria. Nervno-myshechnye bolezni. 2022; 12(2): 10–8. https://doi.org/10.17650/2222-8721-2022-12-2-10-18 https://elibrary.ru/eyenho (in Russian)
44. Mayer O.H., Finkel R.S., Rummey C., Benton M.J., Glanzman A.M., Flickinger J., et al. Characterization of pulmonary function in Duchenne muscular dystrophy. Pediatr. Pulmonol. 2015; 50(5): 487–94. https://doi.org/10.1002/ppul.23172
45. Humbertclaude V., Hamroun D., Bezzou K., Bérard C., Boespflug-Tanguy O., Bommelaer C., et al. Motor and respiratory heterogeneity in Duchenne patients: implication for clinical trials. Eur. J. Paediatr. Neurol. 2012; 16(2): 149–60. https://doi.org/10.1016/j.ejpn.2011.07.001
46. Mercuri E., Osorio A.N., Muntoni F., Buccella F., Desguerre I., Kirschner J., et al. Safety and effectiveness of ataluren in patients with nonsense mutation DMD in the STRIDE Registry compared with the CINRG Duchenne Natural History Study (2015-2022): 2022 interim analysis. J. Neurol. 2023; 270(8): 3896–913. https://doi.org/1007/s00415-023-11687-1
47. Poster LSVP 37. Safety and efficacy of ataluren in nmDMD patients from Study 041, a phase 3 placebo-controlled trial. In: 27th International Annual Congress of the World Muscle Society (WMS). Halifax, NS; 2022.
48. Poster 92. Ataluren preserves motor function in nmDMD patients from Study 041, a phase 3, randomized, double-blind, placebo-controlled trial. In: Muscular Dystrophy Association (MDA) Clinical and Scientific Conference. Dallas, TX; 2023.
49. Golli T., Juříková L., Sejersen T., Dixon C. The role of ataluren in the treatment of ambulatory and non-ambulatory children with nonsense mutation Duchenne muscular dystrophy – a consensus derived using a modified Delphi methodology in Eastern Europe, Greece, Israel and Sweden. BMC Neurol. 2024; 24(1): 73. https://doi.org/10.1186/s12883-024-03570-x
Review
For citations:
Popovich S.G., Kuzenkova L.M., Uvakina E.V., Podkletnova T.V., Kozhevnikova O.V., Bushueva T.V., Zvonkova N.G. The use of the drug ataluren for the treatment of patients with Duchenne muscular dystrophy in real clinical practice. L.O. Badalyan Neurological Journal. 2024;5(2):79-89. (In Russ.) https://doi.org/10.46563/2686-8997-2024-5-2-79-89. EDN: ypfabi