Preview

L.O. Badalyan Neurological Journal

Advanced search

Neurofilaments as a biomarker of spinal muscular atrophy: review

https://doi.org/10.46563/2686-8997-2023-4-3-130-136

EDN: epnbqa

Abstract

Spinal muscular atrophy (SMA) is an autosomal recessive, disabling neuromuscular disease characterized by the death of motor neurons in the spinal cord, giving rise in the development both of muscle weakness and, subsequently, flaccid tetraparesis, swallowing and breathing disorders. There are 4 types of SMA, depending on the age of manifestation, the most severe is type I (not counting type 0 — prenatal type).

Modern diagnosis of SMA includes a molecular genetic study looking for mutations in the SMN1 gene and determining the copy number of the SMN2 gene. Instrumental and biochemical methods for evaluating the effectiveness of therapy for spinal muscular atrophy are currently under study. Neurofilament proteins have been investigated as potential biomarkers for several diseases characterized by axonal damage and degeneration. In clinical studies, there are isolated data on the use of blood neurofilaments as markers of SMA. This review considers the literature data of foreign authors and clinical studies of neurofilaments as perspective biomarkers of SMA, both heavy and light chains.

Contribution:
Fisenko D.A. — concept and design of the review, writing the text, editing;
Kuzenkova L.M. — concept and design of the review, editing;
Kurenkov A.L. — concept and design of the review, editing;
Uvakina E.V. — concept and design of the review, editing;
Popovich S.G. — concept and design of the review, editing.
All co-authors are responsible for the integrity of all parts of the manuscript and approval of its final version.

Acknowledgements. The study had no sponsorship.

Conflict of interest. The authors declare no conflict of interest.

Received: June10, 2023
Accepted: August 30, 2023
Published: October 13, 2023

About the Authors

Daria A. Fisenko
National Medical Research Center for Children’s Health, of the Ministry of Health of the Russian Federation
Russian Federation

Postgraduate student of the Center of child psychoneurology, National Medical Research Center of Children’s Health, Moscow, 119991, Russian Federation.

e-mail: fisenko.daria@mail.ru

 



Lyudmila M. Kuzenkova
National Medical Research Center for Children’s Health, of the Ministry of Health of the Russian Federation; N.F. Filatov Clinical Institute of Children’s Health, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of Russia (Sechenov University)
Russian Federation


Alexey L. Kurenkov
National Medical Research Center for Children’s Health, of the Ministry of Health of the Russian Federation
Russian Federation


Eugeniya V. Uvakina
National Medical Research Center for Children’s Health, of the Ministry of Health of the Russian Federation
Russian Federation


Sophia G. Popovich
National Medical Research Center for Children’s Health, of the Ministry of Health of the Russian Federation
Russian Federation


References

1. Mendell J.R., Al-Zaidy S.A., Lehman K.J., McColly M., Lowes L.P., Alfano L.N., et al. Five-year extension results of the phase 1 START trial of onasemnogene abeparvovec in spinal muscular atrophy. JAMA Neurol. 2021; 78(7): 834–41. https://doi.org/10.1001/jamaneurol.2021.1272

2. Calucho M., Bernal S., Alías L., March F., Venceslá A., Rodríguez-Álvarez F.J., et al. Correlation between SMA type and SMN2 copy number revisited: an analysis of 625 unrelated Spanish patients and a compilation of 2,834 reported cases. Neuromuscul. Disord. 2018; 28(3): 208–15. https://doi.org/10.1016/j.nmd.2018.01.003

3. Friese J., Geitmann S., Holzwarth D., Müller N., Sassen R., Baur U., et al. Safety monitoring of gene therapy for spinal muscular atrophy with onasemnogene abeparvovec – a single centre experience. J. Neuromuscul. Dis. 2021; 8(2): 209–16. https://doi.org/10.3233/jnd-200593

4. Wirth B., Herz M., Wetter A., Moskau S., Hahnen E., Rudnik-Schöneborn S., et al. Quantitative analysis of survival motor neuron copies: identification of subtle SMN1 mutations in patients with spinal muscular atrophy, genotype-phenotype correlation, and implications for genetic counseling. Am. J. Hum. Genet. 1999; 64(5): 1340–56. https://doi.org/10.1086/302369

5. Ferreira-Atuesta C., Reyes S., Giovanonni G., Gnanapavan S. The evolution of neurofilament light chain in multiple sclerosis. Front. Neurosci. 2021; 15: 642384. https://doi.org/10.3389/fnins.2021.642384

6. Khalil M., Teunissen C.E., Otto M., Piehl F., Sormani M.P., Gattringer T., et al. Neurofilaments as biomarkers in neurological disorders. Nat. Rev. Neurol. 2018; 14(10): 577–89. https://doi.org/10.1038/s41582-018-0058-z

7. Yuan A., Nixon R.A. Neurofilament proteins as biomarkers to monitor neurological diseases and the efficacy of therapies. Front. Neurosci. 2021; 15: 689938. https://doi.org/10.3389/fnins.2021.689938

8. Hviid C.V.B., Knudsen C.S., Parkner T. Reference interval and preanalytical properties of serum neurofilament light chain in Scandinavian adults. Scand. J. Clin. Lab. Invest. 2020; 80(4): 291–5. https://doi.org/10.1080/00365513.2020.1730434

9. Vorob’eva A.A., Ivanova M.V., Fominykh V.V., Zakharova M.N., Zigangirova N.A., Gulyaeva N.V. Biomarkers in multiple sclerosis (a review and experimental data). Zhurnal nevrologii i psikhiatrii im. S.S. Korsakova. Spetsvypuski. 2013; 113(10‑2): 23–31. https://elibrary.ru/rtekrh (in Russian)

10. Gafson A.R., Barthélemy N.R., Bomont P., Carare R.O., Durham H.D., Julien J.P., et al. Neurofilaments: neurobiological foundations for biomarker applications. Brain. 2020; 143(7): 1975–98. https://doi.org/10.1093/brain/awaa098

11. Darras B.T., Crawford T.O., Finkel R.S., Mercuri E., De Vivo D.C., Oskoui M., et al. Neurofilament as a potential biomarker for spinal muscular atrophy. Ann. Clin. Transl. Neurol. 2019; 6(5): 932–44. https://doi.org/10.1002/acn3.779

12. Matsushige T., Inoue H., Fukunaga S., Hasegawa S., Okuda M., Ichiyama T. Serum neurofilament concentrations in children with prolonged febrile seizures. J. Neurol. Sci. 2012; 321(1-2): 39–42. https://doi.org/10.1016/j.jns.2012.07.043

13. Douglas-Escobar M., Yang C., Bennett J., Shuster J., Theriaque D., Leibovici A., et al. A pilot study of novel biomarkers in neonates with hypoxic-ischemic encephalopathy. Pediatr. Res. 2010; 68(6): 531–6. https://doi.org/10.1203/pdr.0b013e3181f85a03

14. Toorell H., Zetterberg H., Blennow K., Savman K., Hagberg H. Increase of neuronal injury markers Tau and neurofilament light proteins in umbilical blood after intrapartum asphyxia. J. Matern. Fetal Neonatal Med. 2018; 31(18): 2468–72. https://doi.org/10.1080/14767058.2017.1344964

15. Shah D.K., Ponnusamy V., Evanson J., Kapellou O., Ekitzidou G., Gupta N., et al. Raised plasma neurofilament light protein levels are associated with abnormal MRI outcomes in newborns undergoing therapeutic hypothermia. Front. Neurol. 2018; 9: 86. https://doi.org/10.3389/fneur.2018.00086

16. Sandelius A., Zetterberg H., Blennow K., Adiutori R., Malaspina A., Laura M., et al. Plasma neurofilament light chain concentration in the inherited peripheral neuropathies. Neurology. 2018; 90(6): e518–24. https://doi.org/10.1212/wnl.0000000000004932

17. Schulpis K.H., Margeli A., Akalestos A., Vlachos G.D., Partsinevelos G.A., Papastamataki M., et al. Effects of mode of delivery on maternal-neonatal plasma antioxidant status and on protein S100B serum concentrations. Scand. J. Clin. Lab. Invest. 2006; 66(8): 733–42. https://doi.org/10.1080/00365510600977737

18. Depoorter A., Neumann R.P., Barro C., Fisch U., Weber P., Kuhle J., et al. Neurofilament light chain: blood biomarker of neonatal neuronal injury. Front. Neurol. 2018; 9: 984. https://doi.org/10.3389/fneur.2018.00984

19. Evers K.S., Hügli M., Fouzas S., Kasser S., Pohl C., Stoecklin B., et al. Serum neurofilament levels in children with febrile seizures and in controls. Front. Neurosci. 2020; 14: 579958. https://doi.org/10.3389/fnins.2020.579958

20. Khalil M., Pirpamer L., Hofer E., Voortman M.M., Barro C., Leppert D., et al. Serum neurofilament light levels in normal aging and their association with morphologic brain changes. Nat. Commun. 2020; 11(1): 812. https://doi.org/10.1038/s41467-020-14612-6

21. Reinert M.C., Benkert P., Wuerfel J., Michalak Z., Ruberte E., Barro C., et al. Serum neurofilament light chain is a useful biomarker in pediatric multiple sclerosis. Neurol. Neuroimmunol. Neuroinflamm. 2020; 7(4): e749. https://doi.org/10.1212/nxi.0000000000000749

22. Alves C.R.R., Petrillo M., Spellman R., Garner R., Zhang R., Kiefer M., et al. Implications of circulating neurofilaments for spinal muscular atrophy treatment early in life: A case series. Mol. Ther. Methods Clin. Dev. 2021; 23: 524–38. https://doi.org/10.1016/j.omtm.2021.10.011

23. Spicer C., Lu C.H., Catapano F., Scoto M., Zaharieva I., Malaspina A., et al. The altered expression of neurofilament in mouse models and patients with spinal muscular atrophy. Ann. Clin. Transl. Neurol. 2021; 8(4): 866–76. https://doi.org/10.1002/acn3.51336

24. Finkel R.S., Ryan M.M., Pascual Pascual S.I., Day J.W., Mercuri E., De Vivo D.C., et al. Scientific rationale for a higher dose of nusinersen. Ann. Clin. Transl. Neurol. 2022; 9(6): 819–29. https://doi.org/10.1002/acn3.51562

25. De Vivo D.C., Bertini E., Swoboda K.J., Hwu W.L., Crawford T.O., Finkel R.S., et al. Nusinersen initiated in infants during the presymptomatic stage of spinal muscular atrophy: Interim efficacy and safety results from the Phase 2 NURTURE study. Neuromuscul. Disord. 2019; 29(11): 842–56. https://doi.org/10.1016/j.nmd.2019.09.007


Review

For citations:


Fisenko D.A., Kuzenkova L.M., Kurenkov A.L., Uvakina E.V., Popovich S.G. Neurofilaments as a biomarker of spinal muscular atrophy: review. L.O. Badalyan Neurological Journal. 2023;4(3):130-136. (In Russ.) https://doi.org/10.46563/2686-8997-2023-4-3-130-136. EDN: epnbqa

Views: 548


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2686-8997 (Print)
ISSN 2712-794X (Online)