Preview

L.O. Badalyan Neurological Journal

Advanced search

Molecular diagnostics of the Krabbe disease in Russian children

https://doi.org/10.46563/2686-8997-2020-1-01-21-28

Abstract

Introduction. Krabbe disease (KD) is the lysosomal storage disease developed due to the decline of the galactocerebrosidase activity associated with mutations in the GALC gene. It leads to the development of oligodendrocytes and lemmocytes (Schwann cells) myelin-forming dysfunction. Nowadays the only possible treatment of KD is hemopoietic cell transplantation which should be performed before the manifestation of any signs of disease. That is why laboratory diagnostics has special significance.

The aim of the study. To elaborate the algorithm of a molecular diagnostics of the Krabbe disease (KD) in Russian children.

Material and methods. 190 patients were diagnosed for the exclusion of KD during the period from 2012 to 2019. In all cases, there was measured a galactocerebrosidase activity in dry blood spots. In cases with the declined enzyme activity, there was performed a further search of pathogenic variants in the GALC gene. The concentration of glycosyl sphingosine (Lyso-GL1) biomarker was measured in 90 patients included in the study since 2016.

Results. The enzyme activity was decreased in all patients in comparison with the control group (0.33±0.05; 2.95±0.24 µmol/l/h, (p<0.001; CI: 95%) in 9 patients. Also, we revealed an increased concentration of Lyso-GL1 biomarker in matched controls (12.50±1.57 ng/ml; 1.8±0.33 ng/ml, (p<0.005; CI: 95%) in 5 patients. During molecular genetic testing of KD, three novel pathogenic variants of the GALC gene were revealed in 3 out of 9 patients: c.265-2A>G, c.1036del and c.2037_2040del.

Conclusion. The Lyso-GL1 concentration measurement can be used as an additional diagnostics method of KD. The high efficiency of the presented algorithm for the KD diagnostics in Russian children is presented.

About the Authors

Alexander A. Pushkov
National Medical Research Center for Children’s Health
Russian Federation

MD, Ph.D., leading researcher of the Laboratory of molecular genetics and medical genomics of the National Medical Research Center for Children’s Health, Moscow, 119991, Russian Federation.

e-mail: pushkovgenetika@gmail.com



Nataliya N. Mazanova
National Medical Research Center for Children’s Health; I.M. Sechenov First Moscow State Medical University
Russian Federation


Lyudmila M. Kuzenkova
National Medical Research Center for Children’s Health
Russian Federation


Nataliya V. Zhurkova
National Medical Research Center for Children’s Health
Russian Federation


Oksana V. Globa
National Medical Research Center for Children’s Health
Russian Federation


Alina Yu. Alexeeva
National Medical Research Center for Children’s Health
Russian Federation


Alla V. Migali
National Medical Research Center for Children’s Health
Russian Federation


Aleksey V. Sukhozhenko
National Medical Research Center for Children’s Health
Russian Federation


Mariya A. Varichkina
National Medical Research Center for Children’s Health
Russian Federation


Vasily V. Chernyaev
I.M. Sechenov First Moscow State Medical University
Russian Federation


Aliy Yu. Asanov
I.M. Sechenov First Moscow State Medical University
Russian Federation


Andrey P. Fisenko
National Medical Research Center for Children’s Health
Russian Federation


Kirill V. Savostyanov
National Medical Research Center for Children’s Health
Russian Federation


References

1. Suzuki K., Suzuki Y. Globoid cell leucodystrophy (Krabbe’s disease): deficiency of galactocerebroside beta-galactosidase. Proc. Natl. Acad. Sci. USA. 1970; 66(2): 302-9. https://doi.org/10.1073/pnas.66.2.302

2. Wenger D.A., Rafi M.A., Luzi P. Molecular genetics of Krabbe disease (globoid cell leukodystrophy): Diagnostic and clinical implications. Hum. Mutat. 1997; 10(4): 268-79. https://doi.org/10.1002/(SICI)1098-1004(1997)10:4<268::AID-HUMU2>3.0.CO;2-D

3. Ткачева Н.В., Сопрунова И.В., Белопасов В.В, Казьмирчук О.Н., Цоцонава Ж.М. Лейкодистрофия Краббе (Наблюдение из практики). Астраханский медицинский журнал. 2014; 9(2): 141-4. Tkacheva N.V., Soprunova I.V., Belopasov V.V. Kaz’mirchuk O.N., Tsotsonava Zh.M. Krabbe disease (Case report). Astrakhanskiy meditsinskiy zhurnal. 2014; 9(2): 141-4. (in Russian)

4. Pannuzzo G., Graziano A.C.E., Avola R., Drago F., Cardile V. Screening for Krabbe disease: the first two years’ experience. Acta Neurol. Scand. 2019; 140(5): 359-65. https://doi.org/10.1111/ane.13153

5. Nashabat M., Al-Khenaizan S., Alfadhel M. Report of a case that expands the phenotype of infantile Krabbe disease. Am. J. Case Rep. 2019; 20: 643-6. https://doi.org/10.12659/AJCR.914275

6. Bascou N.A., Marcos M.C., Beltran Quintero M.L., Roosen-Marcos M.C., Cladis F.P., Poe M.D., et al. General anesthesia safety in progressive leukodystrophies: A retrospective study of patients with Krabbe disease and metachromatic leukodystrophy. Paediatr. Anaesth. 2019; 29(10): 1053-9. https://doi.org/10.1111/pan.13714

7. Human Gene Mutation Database. HGMD® Professional 2019.3. Available at: https://portal.biobase-international.com

8. Breiden B., Sandhoff K. Lysosomal glycosphingolipid storage diseases. Annu. Rev. Biochem. 2019; 88: 461-85. https://doi.org/10.1146/annurev-biochem-013118-111518

9. Wenger D.A., Rafi M.A., Luzi P., Datto J., Costantino-Ceccarini E. Krabbe disease: genetic aspects and progress toward therapy. Mol. Genet. Metab. 2019; 70(1): 1-9. https://doi.org/10.1006/mgme.2000.2990

10. Dever D.P., Scharenberg S.G., Camarena J., Kildebeck E.J., Clark J.T., Martin R.M., et al. CRISPR/Cas9 genome engineering in engraftable human brain-derived neural stem cells. iScience. 2019; 15: 524-35. https://doi.org/10.1016/j.isci.2019.04.036

11. Duffner P.K., Caggana M., Orsini J.J., Wenger D.A., Patterson M.C., Crosley C.J., et al. Newborn screening for Krabbe disease: the New York State model. Pediatr. Neurol. 2009; 40(4): 245-52. https://doi.org/10.1016/j.pediatrneurol.2008.11.010

12. Orsini J.J., Kay D.M., Saavedra-Matiz C.A., Wenger D.A., Duffner P.K., Erbe R.W., et al. Newborn screening for Krabbe disease in New York State: the first eight years’ experience. Genet. Med. 2016; 18(3): 239-48. https://doi.org/10.1038/gim.2015.211

13. Madsen A.M.H., Wibrand F., Lund A.M., Ek J., Dunø M., Østergaard E. Genotype and phenotype classification of 29 patients affected by Krabbe disease. JIMD Rep. 2019; 46(1): 35-45. https://doi.org/10.1002/jmd2.12007

14. Luzi P., Rafi M.A., Wenger D.A. Characterization of the large deletion in the GALC gene found in patients with Krabbe disease. Hum. Mol. Genet. 1995; 4(12): 2335-8. https://doi.org/10.1093/hmg/4.12.2335

15. Fu L. Inui K. Nishigaki T. Tatsumi N. Tsukamoto H. Kokubu C. et al. Molecular heterogeneity of Krabbe disease. J. Inherit. Metab. Dis. 1999 Apr;22(2):155-62.

16. De Gasperi R. Gama Sosa MA. Sartorato EL. Battistini S. MacFarlane H. Gusella JF., et al. Molecular heterogeneity of late-onset forms of globoid-cell leukodystrophy. Am. J. Hum. Genet. 1996 Dec;59(6):1233-42.

17. Elliott S., Buroker N., Cournoyer J.J., Potier A.M., Trometer J.D., Elbin C., et al. Pilot study of newborn screening for six lysosomal storage diseases using Tandem Mass Spectrometry. Mol. Genet. Metab. 2016; 118(4): 304-9. https://doi.org/10.1016/j.ymgme.2016.05.015

18. Рыжкова О.П., Кардымон О.Л., Прохорчук Е.Б., Коновалов Ф.А., Масленников А.Б., Степанов В.А. и др. Руководство по интерпретации данных последовательности ДНК человека. полученных методами массового параллельного секвенирования (MPS) (редакция 2018. версия 2). Медицинская генетика. 2019; 18(2): 3-23. https://doi.org/10.25557/2073-7998.2019. 02.3-23 Ryzhkova O.P., Kardymon O.L., Prokhorchuk E.B., Konovalov F.A., Maslennikov A.B., Stepanov V.A., et al. Guidelines for the interpretation of human DNA sequence data obtained by method of massive parallel sequencing (MPS) (revision of 2018. 2nd version). Meditsinskaya genetika. 2019; 18(2): 3-23. https://doi.org/10.25557/2073-7998.2019.02.3-23 (in Russian)

19. Wenger D.A. Krabbe disease. In: Adam M.P., Ardinger H.H., Pagon R.A., Wallace S.E., Bean L.J.H., Stephens K., et al. GeneReviews®. Seattle. WA: University of Washington; 1993.

20. Savostyanov K.V., Pushkov A.A., Murav’ova L.V., Movsisyan G.B., Rykunova A.I., Ponomarev R.V., et al. Glucosylfingosine (Lyso-GL1) may be the primary biomarker for screening Gaucher disease in Russian patients. Mol. Genet. Metab. 2019; 126(2): S130. https://doi.org/10.1016/j.ymgme.2018.12.334


Review

For citations:


Pushkov A.A., Mazanova N.N., Kuzenkova L.M., Zhurkova N.V., Globa O.V., Alexeeva A.Yu., Migali A.V., Sukhozhenko A.V., Varichkina M.A., Chernyaev V.V., Asanov A.Yu., Fisenko A.P., Savostyanov K.V. Molecular diagnostics of the Krabbe disease in Russian children. L.O. Badalyan Neurological Journal. 2020;1(1):21-28. (In Russ.) https://doi.org/10.46563/2686-8997-2020-1-01-21-28

Views: 504


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2686-8997 (Print)
ISSN 2712-794X (Online)